| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((x ∈ A ∧ y ∈ B) → (φ → ψ)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃x ∈ A ∃y ∈ B φ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((x ∈ A ∧ y ∈ B) → (φ → ψ)) | |
| 2 | 1 | rexlimdva 2739 | . 2 ⊢ (x ∈ A → (∃y ∈ B φ → ψ)) |
| 3 | 2 | rexlimiv 2733 | 1 ⊢ (∃x ∈ A ∃y ∈ B φ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: 2reu5 3045 tfin11 4494 peano4nc 6151 sbth 6207 nclenc 6223 lenc 6224 letc 6232 ce2le 6234 |
| Copyright terms: Public domain | W3C validator |