New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbc19.21g | GIF version |
Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
Ref | Expression |
---|---|
sbcgf.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
sbc19.21g | ⊢ (A ∈ V → ([̣A / x]̣(φ → ψ) ↔ (φ → [̣A / x]̣ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcimg 3088 | . 2 ⊢ (A ∈ V → ([̣A / x]̣(φ → ψ) ↔ ([̣A / x]̣φ → [̣A / x]̣ψ))) | |
2 | sbcgf.1 | . . . 4 ⊢ Ⅎxφ | |
3 | 2 | sbcgf 3110 | . . 3 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ φ)) |
4 | 3 | imbi1d 308 | . 2 ⊢ (A ∈ V → (([̣A / x]̣φ → [̣A / x]̣ψ) ↔ (φ → [̣A / x]̣ψ))) |
5 | 1, 4 | bitrd 244 | 1 ⊢ (A ∈ V → ([̣A / x]̣(φ → ψ) ↔ (φ → [̣A / x]̣ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |