HomeHome New Foundations Explorer
Theorem List (p. 32 of 64)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 3101-3200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbcbidv 3101* Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.)
(φ → (ψχ))       (φ → ([̣A / xψ ↔ [̣A / xχ))
 
Theoremsbcbii 3102 Formula-building inference rule for class substitution. (Contributed by NM, 11-Nov-2005.)
(φψ)       ([̣A / xφ ↔ [̣A / xψ)
 
TheoremsbcbiiOLD 3103 Formula-building inference rule for class substitution. (Contributed by NM, 11-Nov-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
(φψ)       (A V → ([̣A / xφ ↔ [̣A / xψ))
 
Theoremeqsbc2 3104* Substitution for the right-hand side in an equality. This proof was automatically generated from the virtual deduction proof eqsbc2VD in set.mm using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
(A B → ([̣A / xC = xC = A))
 
Theoremsbc3ang 3105 Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(A V → ([̣A / x]̣(φ ψ χ) ↔ ([̣A / xφ A / xψ A / xχ)))
 
Theoremsbcel1gv 3106* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(A V → ([̣A / xx BA B))
 
Theoremsbcel2gv 3107* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(B V → ([̣B / xA xA B))
 
Theoremsbcimdv 3108* Substitution analog of Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 11-Nov-2005.)
(φ → (ψχ))       ((φ A V) → ([̣A / xψ → [̣A / xχ))
 
Theoremsbctt 3109 Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
((A V xφ) → ([̣A / xφφ))
 
Theoremsbcgf 3110 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
xφ       (A V → ([̣A / xφφ))
 
Theoremsbc19.21g 3111 Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.)
xφ       (A V → ([̣A / x]̣(φψ) ↔ (φ → [̣A / xψ)))
 
Theoremsbcg 3112* Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3110. (Contributed by Alan Sare, 10-Nov-2012.)
(A V → ([̣A / xφφ))
 
Theoremsbc2iegf 3113* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.)
xψ    &   yψ    &   x B W    &   ((x = A y = B) → (φψ))       ((A V B W) → ([̣A / x]̣[̣B / yφψ))
 
Theoremsbc2ie 3114* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
A V    &   B V    &   ((x = A y = B) → (φψ))       ([̣A / x]̣[̣B / yφψ)
 
Theoremsbc2iedv 3115* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
A V    &   B V    &   (φ → ((x = A y = B) → (ψχ)))       (φ → ([̣A / x]̣[̣B / yψχ))
 
Theoremsbc3ie 3116* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.)
A V    &   B V    &   C V    &   ((x = A y = B z = C) → (φψ))       ([̣A / x]̣[̣B / y]̣[̣C / zφψ)
 
Theoremsbccomlem 3117* Lemma for sbccom 3118. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
([̣A / x]̣[̣B / yφ ↔ [̣B / y]̣[̣A / xφ)
 
Theoremsbccom 3118* Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
([̣A / x]̣[̣B / yφ ↔ [̣B / y]̣[̣A / xφ)
 
Theoremsbcralt 3119* Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
((A V yA) → ([̣A / xy B φy BA / xφ))
 
Theoremsbcrext 3120* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
((A V yA) → ([̣A / xy B φy BA / xφ))
 
Theoremsbcralg 3121* Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(A V → ([̣A / xy B φy BA / xφ))
 
Theoremsbcrexg 3122* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(A V → ([̣A / xy B φy BA / xφ))
 
Theoremsbcreug 3123* Interchange class substitution and restricted uniqueness quantifier. (Contributed by NM, 24-Feb-2013.)
(A V → ([̣A / x∃!y B φ∃!y BA / xφ))
 
Theoremsbcabel 3124* Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
xB       (A V → ([̣A / x]̣{y φ} B ↔ {y A / xφ} B))
 
Theoremrspsbc 3125* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2024 and spsbc 3059. See also rspsbca 3126 and rspcsbela 3196. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(A B → (x B φ → [̣A / xφ))
 
Theoremrspsbca 3126* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
((A B x B φ) → [̣A / xφ)
 
Theoremrspesbca 3127* Existence form of rspsbca 3126. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
((A B A / xφ) → x B φ)
 
Theoremspesbc 3128 Existence form of spsbc 3059. (Contributed by Mario Carneiro, 18-Nov-2016.)
([̣A / xφxφ)
 
Theoremspesbcd 3129 form of spsbc 3059. (Contributed by Mario Carneiro, 9-Feb-2017.)
(φ → [̣A / xψ)       (φxψ)
 
Theoremsbcth2 3130* A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(x Bφ)       (A B → [̣A / xφ)
 
Theoremra5 3131 Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1798. (Contributed by NM, 16-Jan-2004.)
xφ       (x A (φψ) → (φx A ψ))
 
Theoremrmo2 3132* Alternate definition of restricted "at most one." Note that ∃*x Aφ is not equivalent to y Ax A(φx = y) (in analogy to reu6 3026); to see this, let A be the empty set. However, one direction of this pattern holds; see rmo2i 3133. (Contributed by NM, 17-Jun-2017.)
yφ       (∃*x A φyx A (φx = y))
 
Theoremrmo2i 3133* Condition implying restricted "at most one." (Contributed by NM, 17-Jun-2017.)
yφ       (y A x A (φx = y) → ∃*x A φ)
 
Theoremrmo3 3134* Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
yφ       (∃*x A φx A y A ((φ [y / x]φ) → x = y))
 
Theoremrmob 3135* Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.)
(x = B → (φψ))    &   (x = C → (φχ))       ((∃*x A φ (B A ψ)) → (B = C ↔ (C A χ)))
 
Theoremrmoi 3136* Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
(x = B → (φψ))    &   (x = C → (φχ))       ((∃*x A φ (B A ψ) (C A χ)) → B = C)
 
2.1.9  Proper substitution of classes for sets into classes
 
Syntaxcsb 3137 Extend class notation to include the proper substitution of a class for a set into another class.
class [A / x]B
 
Definitiondf-csb 3138* Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3047, to prevent ambiguity. Theorem sbcel1g 3156 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3165 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
[A / x]B = {y A / xy B}
 
Theoremcsb2 3139* Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that x can be free in B but cannot occur in A. (Contributed by NM, 2-Dec-2013.)
[A / x]B = {y x(x = A y B)}
 
Theoremcsbeq1 3140 Analog of dfsbcq 3049 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(A = B[A / x]C = [B / x]C)
 
Theoremcbvcsb 3141 Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
yC    &   xD    &   (x = yC = D)       [A / x]C = [A / y]D
 
Theoremcbvcsbv 3142* Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
(x = yB = C)       [A / x]B = [A / y]C
 
Theoremcsbeq1d 3143 Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
(φA = B)       (φ[A / x]C = [B / x]C)
 
Theoremcsbid 3144 Analog of sbid 1922 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
[x / x]A = A
 
Theoremcsbeq1a 3145 Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(x = AB = [A / x]B)
 
Theoremcsbco 3146* Composition law for chained substitutions into a class. (Contributed by NM, 10-Nov-2005.)
[A / y][y / x]B = [A / x]B
 
Theoremcsbexg 3147 The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
((A V x B W) → [A / x]B V)
 
Theoremcsbex 3148 The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
A V    &   B V       [A / x]B V
 
Theoremcsbtt 3149 Substitution doesn't affect a constant B (in which x is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
((A V xB) → [A / x]B = B)
 
Theoremcsbconstgf 3150 Substitution doesn't affect a constant B (in which x is not free). (Contributed by NM, 10-Nov-2005.)
xB       (A V[A / x]B = B)
 
Theoremcsbconstg 3151* Substitution doesn't affect a constant B (in which x is not free). csbconstgf 3150 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.)
(A V[A / x]B = B)
 
Theoremsbcel12g 3152 Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(A V → ([̣A / xB C[A / x]B [A / x]C))
 
Theoremsbceqg 3153 Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(A V → ([̣A / xB = C[A / x]B = [A / x]C))
 
Theoremsbcnel12g 3154 Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
(A V → ([̣A / xB C[A / x]B [A / x]C))
 
Theoremsbcne12g 3155 Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
(A V → ([̣A / xBC[A / x]B[A / x]C))
 
Theoremsbcel1g 3156* Move proper substitution in and out of a membership relation. Note that the scope of A / x is the wff B C, whereas the scope of [A / x] is the class B. (Contributed by NM, 10-Nov-2005.)
(A V → ([̣A / xB C[A / x]B C))
 
Theoremsbceq1g 3157* Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
(A V → ([̣A / xB = C[A / x]B = C))
 
Theoremsbcel2g 3158* Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
(A V → ([̣A / xB CB [A / x]C))
 
Theoremsbceq2g 3159* Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
(A V → ([̣A / xB = CB = [A / x]C))
 
Theoremcsbcomg 3160* Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.)
((A V B W) → [A / x][B / y]C = [B / y][A / x]C)
 
Theoremcsbeq2d 3161 Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
xφ    &   (φB = C)       (φ[A / x]B = [A / x]C)
 
Theoremcsbeq2dv 3162* Formula-building deduction rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
(φB = C)       (φ[A / x]B = [A / x]C)
 
Theoremcsbeq2i 3163 Formula-building inference rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
B = C       [A / x]B = [A / x]C
 
Theoremcsbvarg 3164 The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
(A V[A / x]x = A)
 
Theoremsbccsbg 3165* Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
(A V → ([̣A / xφy [A / x]{y φ}))
 
Theoremsbccsb2g 3166 Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
(A V → ([̣A / xφA [A / x]{x φ}))
 
Theoremnfcsb1d 3167 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
(φxA)       (φx[A / x]B)
 
Theoremnfcsb1 3168 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
xA       x[A / x]B
 
Theoremnfcsb1v 3169* Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
x[A / x]B
 
Theoremnfcsbd 3170 Deduction version of nfcsb 3171. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
yφ    &   (φxA)    &   (φxB)       (φx[A / y]B)
 
Theoremnfcsb 3171 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
xA    &   xB       x[A / y]B
 
Theoremcsbhypf 3172* Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2905 for class substitution version. (Contributed by NM, 19-Dec-2008.)
xA    &   xC    &   (x = AB = C)       (y = A[y / x]B = C)
 
Theoremcsbiebt 3173* Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3177.) (Contributed by NM, 11-Nov-2005.)
((A V xC) → (x(x = AB = C) ↔ [A / x]B = C))
 
Theoremcsbiedf 3174* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
xφ    &   (φxC)    &   (φA V)    &   ((φ x = A) → B = C)       (φ[A / x]B = C)
 
Theoremcsbieb 3175* Bidirectional conversion between an implicit class substitution hypothesis x = AB = C and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
A V    &   xC       (x(x = AB = C) ↔ [A / x]B = C)
 
Theoremcsbiebg 3176* Bidirectional conversion between an implicit class substitution hypothesis x = AB = C and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
xC       (A V → (x(x = AB = C) ↔ [A / x]B = C))
 
Theoremcsbiegf 3177* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
(A VxC)    &   (x = AB = C)       (A V[A / x]B = C)
 
Theoremcsbief 3178* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
A V    &   xC    &   (x = AB = C)       [A / x]B = C
 
Theoremcsbied 3179* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.)
(φA V)    &   ((φ x = A) → B = C)       (φ[A / x]B = C)
 
Theoremcsbied2 3180* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
(φA V)    &   (φA = B)    &   ((φ x = B) → C = D)       (φ[A / x]C = D)
 
Theoremcsbie2t 3181* Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3182). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
A V    &   B V       (xy((x = A y = B) → C = D) → [A / x][B / y]C = D)
 
Theoremcsbie2 3182* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
A V    &   B V    &   ((x = A y = B) → C = D)       [A / x][B / y]C = D
 
Theoremcsbie2g 3183* Conversion of implicit substitution to explicit class substitution. This version of sbcie 3081 avoids a disjointness condition on x, A by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
(x = yB = C)    &   (y = AC = D)       (A V[A / x]B = D)
 
Theoremsbcnestgf 3184 Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
((A V yxφ) → ([̣A / x]̣[̣B / yφ ↔ [̣[A / x]B / yφ))
 
Theoremcsbnestgf 3185 Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
((A V yxC) → [A / x][B / y]C = [[A / x]B / y]C)
 
Theoremsbcnestg 3186* Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(A V → ([̣A / x]̣[̣B / yφ ↔ [̣[A / x]B / yφ))
 
Theoremcsbnestg 3187* Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
(A V[A / x][B / y]C = [[A / x]B / y]C)
 
TheoremcsbnestgOLD 3188* Nest the composition of two substitutions. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 23-Nov-2005.)
((A V x B W) → [A / x][B / y]C = [[A / x]B / y]C)
 
Theoremcsbnest1g 3189 Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(A V[A / x][B / x]C = [[A / x]B / x]C)
 
Theoremcsbnest1gOLD 3190* Nest the composition of two substitutions. Obsolete as of 11-Nov-2016. (Contributed by NM, 23-May-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
((A V x B W) → [A / x][B / x]C = [[A / x]B / x]C)
 
Theoremcsbidmg 3191* Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
(A V[A / x][A / x]B = [A / x]B)
 
Theoremsbcco3g 3192* Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
(x = AB = C)       (A V → ([̣A / x]̣[̣B / yφ ↔ [̣C / yφ))
 
Theoremsbcco3gOLD 3193* Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
(x = AB = C)       ((A V x B W) → ([̣A / x]̣[̣B / yφ ↔ [̣C / yφ))
 
Theoremcsbco3g 3194* Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
(x = AB = C)       (A V[A / x][B / y]D = [C / y]D)
 
Theoremcsbco3gOLD 3195* Composition of two class substitutions. Obsolete as of 11-Nov-2016. (Contributed by NM, 27-Nov-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
(x = AB = D)       ((A V x B W) → [A / x][B / y]C = [D / y]C)
 
Theoremrspcsbela 3196* Special case related to rspsbc 3125. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
((A B x B C D) → [A / x]C D)
 
Theoremsbnfc2 3197* Two ways of expressing "x is (effectively) not free in A." (Contributed by Mario Carneiro, 14-Oct-2016.)
(xAyz[y / x]A = [z / x]A)
 
Theoremcsbabg 3198* Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(A V[A / x]{y φ} = {y A / xφ})
 
Theoremcbvralcsf 3199 A more general version of cbvralf 2830 that doesn't require A and B to be distinct from x or y. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
yA    &   xB    &   yφ    &   xψ    &   (x = yA = B)    &   (x = y → (φψ))       (x A φy B ψ)
 
Theoremcbvrexcsf 3200 A more general version of cbvrexf 2831 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.)
yA    &   xB    &   yφ    &   xψ    &   (x = yA = B)    &   (x = y → (φψ))       (x A φy B ψ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Next >