NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcg GIF version

Theorem sbcg 3112
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3110. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
sbcg (A V → ([̣A / xφφ))
Distinct variable group:   φ,x
Allowed substitution hints:   A(x)   V(x)

Proof of Theorem sbcg
StepHypRef Expression
1 nfv 1619 . 2 xφ
21sbcgf 3110 1 (A V → ([̣A / xφφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wcel 1710  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by:  sbcabel  3124  csbunig  3900  csbxpg  4814
  Copyright terms: Public domain W3C validator