| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbid | GIF version | ||
| Description: An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbid | ⊢ ([x / x]φ ↔ φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1676 | . . 3 ⊢ x = x | |
| 2 | sbequ12 1919 | . . 3 ⊢ (x = x → (φ ↔ [x / x]φ)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (φ ↔ [x / x]φ) |
| 4 | 3 | bicomi 193 | 1 ⊢ ([x / x]φ ↔ φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 |
| This theorem is referenced by: abid 2341 sbceq1a 3057 sbcid 3063 csbid 3144 |
| Copyright terms: Public domain | W3C validator |