| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbcthdv | GIF version | ||
| Description: Deduction version of sbcth 3061. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcthdv.1 | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| sbcthdv | ⊢ ((φ ∧ A ∈ V) → [̣A / x]̣ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcthdv.1 | . . 3 ⊢ (φ → ψ) | |
| 2 | 1 | alrimiv 1631 | . 2 ⊢ (φ → ∀xψ) |
| 3 | spsbc 3059 | . 2 ⊢ (A ∈ V → (∀xψ → [̣A / x]̣ψ)) | |
| 4 | 2, 3 | mpan9 455 | 1 ⊢ ((φ ∧ A ∈ V) → [̣A / x]̣ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 [̣wsbc 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 df-sbc 3048 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |