New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbciegf | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbciegf.1 | ⊢ Ⅎxψ |
sbciegf.2 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
sbciegf | ⊢ (A ∈ V → ([̣A / x]̣φ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbciegf.1 | . 2 ⊢ Ⅎxψ | |
2 | sbciegf.2 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
3 | 2 | ax-gen 1546 | . 2 ⊢ ∀x(x = A → (φ ↔ ψ)) |
4 | sbciegft 3077 | . 2 ⊢ ((A ∈ V ∧ Ⅎxψ ∧ ∀x(x = A → (φ ↔ ψ))) → ([̣A / x]̣φ ↔ ψ)) | |
5 | 1, 3, 4 | mp3an23 1269 | 1 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: sbcieg 3079 opelopabf 4712 |
Copyright terms: Public domain | W3C validator |