New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  opelopabf GIF version

Theorem opelopabf 4711
 Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4708 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
opelopabf.x xψ
opelopabf.y yχ
opelopabf.1 A V
opelopabf.2 B V
opelopabf.3 (x = A → (φψ))
opelopabf.4 (y = B → (ψχ))
Assertion
Ref Expression
opelopabf (A, B {x, y φ} ↔ χ)
Distinct variable groups:   x,y,A   x,B,y
Allowed substitution hints:   φ(x,y)   ψ(x,y)   χ(x,y)

Proof of Theorem opelopabf
StepHypRef Expression
1 opelopabsb 4697 . 2 (A, B {x, y φ} ↔ [̣A / x]̣[̣B / yφ)
2 opelopabf.1 . . 3 A V
3 nfcv 2489 . . . . 5 xB
4 opelopabf.x . . . . 5 xψ
53, 4nfsbc 3067 . . . 4 xB / yψ
6 opelopabf.3 . . . . 5 (x = A → (φψ))
76sbcbidv 3100 . . . 4 (x = A → ([̣B / yφ ↔ [̣B / yψ))
85, 7sbciegf 3077 . . 3 (A V → ([̣A / x]̣[̣B / yφ ↔ [̣B / yψ))
92, 8ax-mp 8 . 2 ([̣A / x]̣[̣B / yφ ↔ [̣B / yψ)
10 opelopabf.2 . . 3 B V
11 opelopabf.y . . . 4 yχ
12 opelopabf.4 . . . 4 (y = B → (ψχ))
1311, 12sbciegf 3077 . . 3 (B V → ([̣B / yψχ))
1410, 13ax-mp 8 . 2 ([̣B / yψχ)
151, 9, 143bitri 262 1 (A, B {x, y φ} ↔ χ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176  Ⅎwnf 1544   = wceq 1642   ∈ wcel 1710  Vcvv 2859  [̣wsbc 3046  ⟨cop 4561  {copab 4622 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator