New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbor | GIF version |
Description: Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) |
Ref | Expression |
---|---|
sbor | ⊢ ([y / x](φ ∨ ψ) ↔ ([y / x]φ ∨ [y / x]ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 2065 | . . 3 ⊢ ([y / x](¬ φ → ψ) ↔ ([y / x] ¬ φ → [y / x]ψ)) | |
2 | sbn 2062 | . . . 4 ⊢ ([y / x] ¬ φ ↔ ¬ [y / x]φ) | |
3 | 2 | imbi1i 315 | . . 3 ⊢ (([y / x] ¬ φ → [y / x]ψ) ↔ (¬ [y / x]φ → [y / x]ψ)) |
4 | 1, 3 | bitri 240 | . 2 ⊢ ([y / x](¬ φ → ψ) ↔ (¬ [y / x]φ → [y / x]ψ)) |
5 | df-or 359 | . . 3 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
6 | 5 | sbbii 1653 | . 2 ⊢ ([y / x](φ ∨ ψ) ↔ [y / x](¬ φ → ψ)) |
7 | df-or 359 | . 2 ⊢ (([y / x]φ ∨ [y / x]ψ) ↔ (¬ [y / x]φ → [y / x]ψ)) | |
8 | 4, 6, 7 | 3bitr4i 268 | 1 ⊢ ([y / x](φ ∨ ψ) ↔ ([y / x]φ ∨ [y / x]ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbcor 3091 sbcorg 3092 unab 3522 |
Copyright terms: Public domain | W3C validator |