New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbim | GIF version |
Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbim | ⊢ ([y / x](φ → ψ) ↔ ([y / x]φ → [y / x]ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbi1 2063 | . 2 ⊢ ([y / x](φ → ψ) → ([y / x]φ → [y / x]ψ)) | |
2 | sbi2 2064 | . 2 ⊢ (([y / x]φ → [y / x]ψ) → [y / x](φ → ψ)) | |
3 | 1, 2 | impbii 180 | 1 ⊢ ([y / x](φ → ψ) ↔ ([y / x]φ → [y / x]ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbor 2066 sbrim 2067 sblim 2068 sban 2069 sbbi 2071 sbequ8 2079 sbcimg 3088 |
Copyright terms: Public domain | W3C validator |