NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbim GIF version

Theorem sbim 2065
Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbim ([y / x](φψ) ↔ ([y / x]φ → [y / x]ψ))

Proof of Theorem sbim
StepHypRef Expression
1 sbi1 2063 . 2 ([y / x](φψ) → ([y / x]φ → [y / x]ψ))
2 sbi2 2064 . 2 (([y / x]φ → [y / x]ψ) → [y / x](φψ))
31, 2impbii 180 1 ([y / x](φψ) ↔ ([y / x]φ → [y / x]ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  sbor  2066  sbrim  2067  sblim  2068  sban  2069  sbbi  2071  sbequ8  2079  sbcimg  3088
  Copyright terms: Public domain W3C validator