New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unab | GIF version |
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unab | ⊢ ({x ∣ φ} ∪ {x ∣ ψ}) = {x ∣ (φ ∨ ψ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbor 2066 | . . 3 ⊢ ([y / x](φ ∨ ψ) ↔ ([y / x]φ ∨ [y / x]ψ)) | |
2 | df-clab 2340 | . . 3 ⊢ (y ∈ {x ∣ (φ ∨ ψ)} ↔ [y / x](φ ∨ ψ)) | |
3 | df-clab 2340 | . . . 4 ⊢ (y ∈ {x ∣ φ} ↔ [y / x]φ) | |
4 | df-clab 2340 | . . . 4 ⊢ (y ∈ {x ∣ ψ} ↔ [y / x]ψ) | |
5 | 3, 4 | orbi12i 507 | . . 3 ⊢ ((y ∈ {x ∣ φ} ∨ y ∈ {x ∣ ψ}) ↔ ([y / x]φ ∨ [y / x]ψ)) |
6 | 1, 2, 5 | 3bitr4ri 269 | . 2 ⊢ ((y ∈ {x ∣ φ} ∨ y ∈ {x ∣ ψ}) ↔ y ∈ {x ∣ (φ ∨ ψ)}) |
7 | 6 | uneqri 3407 | 1 ⊢ ({x ∣ φ} ∪ {x ∣ ψ}) = {x ∣ (φ ∨ ψ)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 357 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: unrab 3527 rabun2 3535 dfif6 3666 nnc0suc 4413 nncaddccl 4420 preaddccan2lem1 4455 ltfintrilem1 4466 nnadjoin 4521 tfinnn 4535 phiun 4615 unopab 4639 clos1basesuc 5883 leconnnc 6219 addccan2nclem2 6265 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |