NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unab GIF version

Theorem unab 3522
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unab ({x φ} ∪ {x ψ}) = {x (φ ψ)}

Proof of Theorem unab
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 sbor 2066 . . 3 ([y / x](φ ψ) ↔ ([y / x]φ [y / x]ψ))
2 df-clab 2340 . . 3 (y {x (φ ψ)} ↔ [y / x](φ ψ))
3 df-clab 2340 . . . 4 (y {x φ} ↔ [y / x]φ)
4 df-clab 2340 . . . 4 (y {x ψ} ↔ [y / x]ψ)
53, 4orbi12i 507 . . 3 ((y {x φ} y {x ψ}) ↔ ([y / x]φ [y / x]ψ))
61, 2, 53bitr4ri 269 . 2 ((y {x φ} y {x ψ}) ↔ y {x (φ ψ)})
76uneqri 3407 1 ({x φ} ∪ {x ψ}) = {x (φ ψ)}
Colors of variables: wff setvar class
Syntax hints:   wo 357   = wceq 1642  [wsb 1648   wcel 1710  {cab 2339  cun 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215
This theorem is referenced by:  unrab  3527  rabun2  3535  dfif6  3666  nnc0suc  4413  nncaddccl  4420  preaddccan2lem1  4455  ltfintrilem1  4466  nnadjoin  4521  tfinnn  4535  phiun  4615  unopab  4639  clos1basesuc  5883  leconnnc  6219  addccan2nclem2  6265  nchoicelem16  6305
  Copyright terms: Public domain W3C validator