Step | Hyp | Ref
| Expression |
1 | | elnc 6126 |
. . 3
⊢ (x ∈ Nc (A ∪ B) ↔ x
≈ (A ∪ B)) |
2 | | bren 6031 |
. . . . 5
⊢ (x ≈ (A
∪ B) ↔ ∃r r:x–1-1-onto→(A ∪
B)) |
3 | | f1ocnv 5300 |
. . . . . . 7
⊢ (r:x–1-1-onto→(A ∪
B) → ◡r:(A ∪
B)–1-1-onto→x) |
4 | | imaundi 5040 |
. . . . . . . . . . 11
⊢ (◡r
“ (A ∪ B)) = ((◡r
“ A) ∪ (◡r
“ B)) |
5 | | imadmrn 5009 |
. . . . . . . . . . . . 13
⊢ (◡r
“ dom ◡r) = ran ◡r |
6 | 5 | a1i 10 |
. . . . . . . . . . . 12
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
“ dom ◡r) = ran ◡r) |
7 | | f1odm 5291 |
. . . . . . . . . . . . 13
⊢ (◡r:(A ∪
B)–1-1-onto→x →
dom ◡r = (A ∪
B)) |
8 | 7 | imaeq2d 4943 |
. . . . . . . . . . . 12
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
“ dom ◡r) = (◡r
“ (A ∪ B))) |
9 | | f1ofo 5294 |
. . . . . . . . . . . . 13
⊢ (◡r:(A ∪
B)–1-1-onto→x →
◡r:(A ∪
B)–onto→x) |
10 | | forn 5273 |
. . . . . . . . . . . . 13
⊢ (◡r:(A ∪
B)–onto→x →
ran ◡r = x) |
11 | 9, 10 | syl 15 |
. . . . . . . . . . . 12
⊢ (◡r:(A ∪
B)–1-1-onto→x →
ran ◡r = x) |
12 | 6, 8, 11 | 3eqtr3d 2393 |
. . . . . . . . . . 11
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
“ (A ∪ B)) = x) |
13 | 4, 12 | syl5eqr 2399 |
. . . . . . . . . 10
⊢ (◡r:(A ∪
B)–1-1-onto→x →
((◡r “ A)
∪ (◡r “ B)) =
x) |
14 | 13 | adantl 452 |
. . . . . . . . 9
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
((◡r “ A)
∪ (◡r “ B)) =
x) |
15 | | f1of1 5287 |
. . . . . . . . . . . . . 14
⊢ (◡r:(A ∪
B)–1-1-onto→x →
◡r:(A ∪
B)–1-1→x) |
16 | | ssun1 3427 |
. . . . . . . . . . . . . 14
⊢ A ⊆ (A ∪ B) |
17 | | f1ores 5301 |
. . . . . . . . . . . . . 14
⊢ ((◡r:(A ∪
B)–1-1→x ∧ A ⊆ (A ∪
B)) → (◡r ↾ A):A–1-1-onto→(◡r
“ A)) |
18 | 15, 16, 17 | sylancl 643 |
. . . . . . . . . . . . 13
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
↾ A):A–1-1-onto→(◡r
“ A)) |
19 | | f1ocnv 5300 |
. . . . . . . . . . . . 13
⊢ ((◡r ↾ A):A–1-1-onto→(◡r
“ A) → ◡(◡r ↾ A):(◡r
“ A)–1-1-onto→A) |
20 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ r ∈
V |
21 | 20 | cnvex 5103 |
. . . . . . . . . . . . . . . 16
⊢ ◡r ∈ V |
22 | | ncdisjun.1 |
. . . . . . . . . . . . . . . 16
⊢ A ∈
V |
23 | 21, 22 | resex 5118 |
. . . . . . . . . . . . . . 15
⊢ (◡r ↾ A) ∈ V |
24 | 23 | cnvex 5103 |
. . . . . . . . . . . . . 14
⊢ ◡(◡r ↾ A) ∈ V |
25 | 24 | f1oen 6034 |
. . . . . . . . . . . . 13
⊢ (◡(◡r ↾ A):(◡r
“ A)–1-1-onto→A →
(◡r
“ A) ≈ A) |
26 | 18, 19, 25 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
“ A) ≈ A) |
27 | | elnc 6126 |
. . . . . . . . . . . 12
⊢ ((◡r
“ A) ∈ Nc A ↔ (◡r
“ A) ≈ A) |
28 | 26, 27 | sylibr 203 |
. . . . . . . . . . 11
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
“ A) ∈ Nc A) |
29 | 28 | adantl 452 |
. . . . . . . . . 10
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
(◡r
“ A) ∈ Nc A) |
30 | | ssun2 3428 |
. . . . . . . . . . . . . 14
⊢ B ⊆ (A ∪ B) |
31 | | f1ores 5301 |
. . . . . . . . . . . . . 14
⊢ ((◡r:(A ∪
B)–1-1→x ∧ B ⊆ (A ∪
B)) → (◡r ↾ B):B–1-1-onto→(◡r
“ B)) |
32 | 15, 30, 31 | sylancl 643 |
. . . . . . . . . . . . 13
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
↾ B):B–1-1-onto→(◡r
“ B)) |
33 | | f1ocnv 5300 |
. . . . . . . . . . . . 13
⊢ ((◡r ↾ B):B–1-1-onto→(◡r
“ B) → ◡(◡r ↾ B):(◡r
“ B)–1-1-onto→B) |
34 | | ncdisjun.2 |
. . . . . . . . . . . . . . . 16
⊢ B ∈
V |
35 | 21, 34 | resex 5118 |
. . . . . . . . . . . . . . 15
⊢ (◡r ↾ B) ∈ V |
36 | 35 | cnvex 5103 |
. . . . . . . . . . . . . 14
⊢ ◡(◡r ↾ B) ∈ V |
37 | 36 | f1oen 6034 |
. . . . . . . . . . . . 13
⊢ (◡(◡r ↾ B):(◡r
“ B)–1-1-onto→B →
(◡r
“ B) ≈ B) |
38 | 32, 33, 37 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
“ B) ≈ B) |
39 | 38 | adantl 452 |
. . . . . . . . . . 11
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
(◡r
“ B) ≈ B) |
40 | | elnc 6126 |
. . . . . . . . . . 11
⊢ ((◡r
“ B) ∈ Nc B ↔ (◡r
“ B) ≈ B) |
41 | 39, 40 | sylibr 203 |
. . . . . . . . . 10
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
(◡r
“ B) ∈ Nc B) |
42 | | df-f1 4793 |
. . . . . . . . . . . . . 14
⊢ (◡r:(A ∪
B)–1-1→x ↔
(◡r:(A ∪
B)–→x ∧ Fun ◡◡r)) |
43 | 42 | simprbi 450 |
. . . . . . . . . . . . 13
⊢ (◡r:(A ∪
B)–1-1→x →
Fun ◡◡r) |
44 | | imain 5173 |
. . . . . . . . . . . . 13
⊢ (Fun ◡◡r →
(◡r
“ (A ∩ B)) = ((◡r
“ A) ∩ (◡r
“ B))) |
45 | 15, 43, 44 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (◡r:(A ∪
B)–1-1-onto→x →
(◡r
“ (A ∩ B)) = ((◡r
“ A) ∩ (◡r
“ B))) |
46 | 45 | adantl 452 |
. . . . . . . . . . 11
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
(◡r
“ (A ∩ B)) = ((◡r
“ A) ∩ (◡r
“ B))) |
47 | | imaeq2 4939 |
. . . . . . . . . . . . 13
⊢ ((A ∩ B) =
∅ → (◡r
“ (A ∩ B)) = (◡r
“ ∅)) |
48 | | ima0 5014 |
. . . . . . . . . . . . 13
⊢ (◡r
“ ∅) = ∅ |
49 | 47, 48 | syl6eq 2401 |
. . . . . . . . . . . 12
⊢ ((A ∩ B) =
∅ → (◡r
“ (A ∩ B)) = ∅) |
50 | 49 | adantr 451 |
. . . . . . . . . . 11
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
(◡r
“ (A ∩ B)) = ∅) |
51 | 46, 50 | eqtr3d 2387 |
. . . . . . . . . 10
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
((◡r “ A)
∩ (◡r “ B)) =
∅) |
52 | | eladdci 4400 |
. . . . . . . . . 10
⊢ (((◡r
“ A) ∈ Nc A ∧ (◡r
“ B) ∈ Nc B ∧ ((◡r
“ A) ∩ (◡r
“ B)) = ∅) → ((◡r
“ A) ∪ (◡r
“ B)) ∈ ( Nc A +c Nc B)) |
53 | 29, 41, 51, 52 | syl3anc 1182 |
. . . . . . . . 9
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
((◡r “ A)
∪ (◡r “ B))
∈ ( Nc A +c Nc B)) |
54 | 14, 53 | eqeltrrd 2428 |
. . . . . . . 8
⊢ (((A ∩ B) =
∅ ∧ ◡r:(A ∪
B)–1-1-onto→x) →
x ∈ (
Nc A
+c Nc B)) |
55 | 54 | ex 423 |
. . . . . . 7
⊢ ((A ∩ B) =
∅ → (◡r:(A ∪
B)–1-1-onto→x →
x ∈ (
Nc A
+c Nc B))) |
56 | 3, 55 | syl5 28 |
. . . . . 6
⊢ ((A ∩ B) =
∅ → (r:x–1-1-onto→(A ∪
B) → x ∈ ( Nc A
+c Nc B))) |
57 | 56 | exlimdv 1636 |
. . . . 5
⊢ ((A ∩ B) =
∅ → (∃r r:x–1-1-onto→(A ∪
B) → x ∈ ( Nc A
+c Nc B))) |
58 | 2, 57 | syl5bi 208 |
. . . 4
⊢ ((A ∩ B) =
∅ → (x ≈ (A
∪ B) → x ∈ ( Nc A
+c Nc B))) |
59 | | eladdc 4399 |
. . . . 5
⊢ (x ∈ ( Nc A
+c Nc B) ↔ ∃p ∈ Nc A∃q ∈ Nc B((p ∩ q) =
∅ ∧
x = (p
∪ q))) |
60 | | simplrl 736 |
. . . . . . . . . 10
⊢ ((((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) ∧ (p ∩ q) =
∅) → p ∈ Nc A) |
61 | | elnc 6126 |
. . . . . . . . . 10
⊢ (p ∈ Nc A ↔ p ≈ A) |
62 | 60, 61 | sylib 188 |
. . . . . . . . 9
⊢ ((((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) ∧ (p ∩ q) =
∅) → p ≈ A) |
63 | | simplrr 737 |
. . . . . . . . . 10
⊢ ((((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) ∧ (p ∩ q) =
∅) → q ∈ Nc B) |
64 | | elnc 6126 |
. . . . . . . . . 10
⊢ (q ∈ Nc B ↔ q ≈ B) |
65 | 63, 64 | sylib 188 |
. . . . . . . . 9
⊢ ((((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) ∧ (p ∩ q) =
∅) → q ≈ B) |
66 | | simpr 447 |
. . . . . . . . 9
⊢ ((((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) ∧ (p ∩ q) =
∅) → (p ∩ q) =
∅) |
67 | | simpll 730 |
. . . . . . . . 9
⊢ ((((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) ∧ (p ∩ q) =
∅) → (A ∩ B) =
∅) |
68 | | unen 6049 |
. . . . . . . . 9
⊢ (((p ≈ A
∧ q
≈ B) ∧ ((p ∩
q) = ∅
∧ (A ∩
B) = ∅))
→ (p ∪ q) ≈ (A
∪ B)) |
69 | 62, 65, 66, 67, 68 | syl22anc 1183 |
. . . . . . . 8
⊢ ((((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) ∧ (p ∩ q) =
∅) → (p ∪ q)
≈ (A ∪ B)) |
70 | | breq1 4643 |
. . . . . . . 8
⊢ (x = (p ∪
q) → (x ≈ (A
∪ B) ↔ (p ∪ q)
≈ (A ∪ B))) |
71 | 69, 70 | syl5ibrcom 213 |
. . . . . . 7
⊢ ((((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) ∧ (p ∩ q) =
∅) → (x = (p ∪
q) → x ≈ (A
∪ B))) |
72 | 71 | expimpd 586 |
. . . . . 6
⊢ (((A ∩ B) =
∅ ∧
(p ∈
Nc A ∧ q ∈ Nc B)) → (((p
∩ q) = ∅ ∧ x = (p ∪
q)) → x ≈ (A
∪ B))) |
73 | 72 | rexlimdvva 2746 |
. . . . 5
⊢ ((A ∩ B) =
∅ → (∃p ∈ Nc A∃q ∈ Nc B((p ∩ q) =
∅ ∧
x = (p
∪ q)) → x ≈ (A
∪ B))) |
74 | 59, 73 | syl5bi 208 |
. . . 4
⊢ ((A ∩ B) =
∅ → (x ∈ ( Nc A
+c Nc B) → x
≈ (A ∪ B))) |
75 | 58, 74 | impbid 183 |
. . 3
⊢ ((A ∩ B) =
∅ → (x ≈ (A
∪ B) ↔ x ∈ ( Nc A
+c Nc B))) |
76 | 1, 75 | syl5bb 248 |
. 2
⊢ ((A ∩ B) =
∅ → (x ∈ Nc (A ∪ B) ↔ x
∈ ( Nc A +c Nc B))) |
77 | 76 | eqrdv 2351 |
1
⊢ ((A ∩ B) =
∅ → Nc
(A ∪ B) = ( Nc A +c Nc B)) |