New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  snnzg GIF version

Theorem snnzg 3833
 Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
snnzg (A V → {A} ≠ )

Proof of Theorem snnzg
StepHypRef Expression
1 snidg 3758 . 2 (A VA {A})
2 ne0i 3556 . 2 (A {A} → {A} ≠ )
31, 2syl 15 1 (A V → {A} ≠ )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1710   ≠ wne 2516  ∅c0 3550  {csn 3737 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215  df-nul 3551  df-sn 3741 This theorem is referenced by:  snnz  3834
 Copyright terms: Public domain W3C validator