New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ne0i | GIF version |
Description: If a set has elements, it is not empty. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
ne0i | ⊢ (B ∈ A → A ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3555 | . 2 ⊢ (B ∈ A → ¬ A = ∅) | |
2 | df-ne 2518 | . 2 ⊢ (A ≠ ∅ ↔ ¬ A = ∅) | |
3 | 1, 2 | sylibr 203 | 1 ⊢ (B ∈ A → A ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 ≠ wne 2516 ∅c0 3550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-nul 3551 |
This theorem is referenced by: vn0 3557 inelcm 3605 rzal 3651 rexn0 3652 snnzg 3833 prnz 3835 tpnz 3837 pw10b 4166 tfinnnul 4490 tfinpw1 4494 tfin1c 4499 0ceven 4505 sfintfin 4532 tfinnn 4534 sfinltfin 4535 sfin111 4536 vfinspnn 4541 vfin1cltv 4547 vfinncvntnn 4548 vinf 4555 nulnnn 4556 xpnz 5045 elfvdm 5351 elovex12 5648 map0 6025 xpsnen 6049 ncssfin 6151 ce0nnulb 6182 |
Copyright terms: Public domain | W3C validator |