NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ne0i GIF version

Theorem ne0i 3557
Description: If a set has elements, it is not empty. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
ne0i (B AA)

Proof of Theorem ne0i
StepHypRef Expression
1 n0i 3556 . 2 (B A → ¬ A = )
2 df-ne 2519 . 2 (A ↔ ¬ A = )
31, 2sylibr 203 1 (B AA)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642   wcel 1710  wne 2517  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by:  vn0  3558  inelcm  3606  rzal  3652  rexn0  3653  snnzg  3834  prnz  3836  tpnz  3838  pw10b  4167  tfinnnul  4491  tfinpw1  4495  tfin1c  4500  0ceven  4506  sfintfin  4533  tfinnn  4535  sfinltfin  4536  sfin111  4537  vfinspnn  4542  vfin1cltv  4548  vfinncvntnn  4549  vinf  4556  nulnnn  4557  xpnz  5046  elfvdm  5352  elovex12  5649  map0  6026  xpsnen  6050  ncssfin  6152  ce0nnulb  6183
  Copyright terms: Public domain W3C validator