NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  snnz GIF version

Theorem snnz 3835
Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
snnz.1 A V
Assertion
Ref Expression
snnz {A} ≠

Proof of Theorem snnz
StepHypRef Expression
1 snnz.1 . 2 A V
2 snnzg 3834 . 2 (A V → {A} ≠ )
31, 2ax-mp 5 1 {A} ≠
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  wne 2517  Vcvv 2860  c0 3551  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552  df-sn 3742
This theorem is referenced by:  snsssn  3874  0lt1c  6259
  Copyright terms: Public domain W3C validator