NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spcdv GIF version

Theorem spcdv 2938
Description: Rule of specialization, using implicit substitution. Analogous to rspcdv 2959. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
spcimdv.1 (φA B)
spcdv.2 ((φ x = A) → (ψχ))
Assertion
Ref Expression
spcdv (φ → (xψχ))
Distinct variable groups:   x,A   φ,x   χ,x
Allowed substitution hints:   ψ(x)   B(x)

Proof of Theorem spcdv
StepHypRef Expression
1 spcimdv.1 . 2 (φA B)
2 spcdv.2 . . 3 ((φ x = A) → (ψχ))
32biimpd 198 . 2 ((φ x = A) → (ψχ))
41, 3spcimdv 2937 1 (φ → (xψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator