New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spcimdv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | ⊢ (φ → A ∈ B) |
spcimdv.2 | ⊢ ((φ ∧ x = A) → (ψ → χ)) |
Ref | Expression |
---|---|
spcimdv | ⊢ (φ → (∀xψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.2 | . . . 4 ⊢ ((φ ∧ x = A) → (ψ → χ)) | |
2 | 1 | ex 423 | . . 3 ⊢ (φ → (x = A → (ψ → χ))) |
3 | 2 | alrimiv 1631 | . 2 ⊢ (φ → ∀x(x = A → (ψ → χ))) |
4 | spcimdv.1 | . 2 ⊢ (φ → A ∈ B) | |
5 | nfv 1619 | . . 3 ⊢ Ⅎxχ | |
6 | nfcv 2490 | . . 3 ⊢ ℲxA | |
7 | 5, 6 | spcimgft 2931 | . 2 ⊢ (∀x(x = A → (ψ → χ)) → (A ∈ B → (∀xψ → χ))) |
8 | 3, 4, 7 | sylc 56 | 1 ⊢ (φ → (∀xψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: spcdv 2938 spcimedv 2939 rspcimdv 2957 |
Copyright terms: Public domain | W3C validator |