New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spimed | GIF version |
Description: Deduction version of spime 1976. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
spimed.1 | ⊢ (χ → Ⅎxφ) |
spimed.2 | ⊢ (x = y → (φ → ψ)) |
Ref | Expression |
---|---|
spimed | ⊢ (χ → (φ → ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spimed.1 | . 2 ⊢ (χ → Ⅎxφ) | |
2 | nfnf1 1790 | . . . . 5 ⊢ ℲxℲxφ | |
3 | id 19 | . . . . 5 ⊢ (Ⅎxφ → Ⅎxφ) | |
4 | 2, 3 | nfan1 1881 | . . . 4 ⊢ Ⅎx(Ⅎxφ ∧ φ) |
5 | spimed.2 | . . . . 5 ⊢ (x = y → (φ → ψ)) | |
6 | 5 | adantld 453 | . . . 4 ⊢ (x = y → ((Ⅎxφ ∧ φ) → ψ)) |
7 | 4, 6 | spime 1976 | . . 3 ⊢ ((Ⅎxφ ∧ φ) → ∃xψ) |
8 | 7 | ex 423 | . 2 ⊢ (Ⅎxφ → (φ → ∃xψ)) |
9 | 1, 8 | syl 15 | 1 ⊢ (χ → (φ → ∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: equvini 1987 |
Copyright terms: Public domain | W3C validator |