New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssabral | GIF version |
Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.) |
Ref | Expression |
---|---|
ssabral | ⊢ (A ⊆ {x ∣ φ} ↔ ∀x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssab 3337 | . 2 ⊢ (A ⊆ {x ∣ φ} ↔ ∀x(x ∈ A → φ)) | |
2 | df-ral 2620 | . 2 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
3 | 1, 2 | bitr4i 243 | 1 ⊢ (A ⊆ {x ∣ φ} ↔ ∀x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∈ wcel 1710 {cab 2339 ∀wral 2615 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |