New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ss2abi | GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
ss2abi | ⊢ {x ∣ φ} ⊆ {x ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ab 3335 | . 2 ⊢ ({x ∣ φ} ⊆ {x ∣ ψ} ↔ ∀x(φ → ψ)) | |
2 | ss2abi.1 | . 2 ⊢ (φ → ψ) | |
3 | 1, 2 | mpgbir 1550 | 1 ⊢ {x ∣ φ} ⊆ {x ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 {cab 2339 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: abssi 3342 rabssab 3353 imassrn 5010 mapsspm 6022 |
Copyright terms: Public domain | W3C validator |