New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssab | GIF version |
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
ssab | ⊢ (A ⊆ {x ∣ φ} ↔ ∀x(x ∈ A → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2 2471 | . . 3 ⊢ {x ∣ x ∈ A} = A | |
2 | 1 | sseq1i 3296 | . 2 ⊢ ({x ∣ x ∈ A} ⊆ {x ∣ φ} ↔ A ⊆ {x ∣ φ}) |
3 | ss2ab 3335 | . 2 ⊢ ({x ∣ x ∈ A} ⊆ {x ∣ φ} ↔ ∀x(x ∈ A → φ)) | |
4 | 2, 3 | bitr3i 242 | 1 ⊢ (A ⊆ {x ∣ φ} ↔ ∀x(x ∈ A → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∈ wcel 1710 {cab 2339 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: ssabral 3338 ssrab 3345 clos1is 5882 |
Copyright terms: Public domain | W3C validator |