NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssab GIF version

Theorem ssab 3337
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab (A {x φ} ↔ x(x Aφ))
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2471 . . 3 {x x A} = A
21sseq1i 3296 . 2 ({x x A} {x φ} ↔ A {x φ})
3 ss2ab 3335 . 2 ({x x A} {x φ} ↔ x(x Aφ))
42, 3bitr3i 242 1 (A {x φ} ↔ x(x Aφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540   wcel 1710  {cab 2339   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  ssabral  3338  ssrab  3345  clos1is  5882
  Copyright terms: Public domain W3C validator