New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sseld | GIF version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
sseld.1 | ⊢ (φ → A ⊆ B) |
Ref | Expression |
---|---|
sseld | ⊢ (φ → (C ∈ A → C ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | . 2 ⊢ (φ → A ⊆ B) | |
2 | ssel 3268 | . 2 ⊢ (A ⊆ B → (C ∈ A → C ∈ B)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (C ∈ A → C ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: sselda 3274 sseldd 3275 ssneld 3276 elelpwi 3733 findsd 4411 sfinltfin 4536 ssbrd 4681 opelf 5236 fun11iun 5306 fvimacnv 5404 ffvelrn 5416 dff3 5421 dff4 5422 enprmaplem3 6079 spacind 6288 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |