NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sseq2d GIF version

Theorem sseq2d 3300
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1 (φA = B)
Assertion
Ref Expression
sseq2d (φ → (C AC B))

Proof of Theorem sseq2d
StepHypRef Expression
1 sseq1d.1 . 2 (φA = B)
2 sseq2 3294 . 2 (A = B → (C AC B))
31, 2syl 15 1 (φ → (C AC B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  sseq12d  3301  sseqtrd  3308  funimass2  5171  fnco  5192  fnssresb  5196  f1ores  5301  foimacnv  5304  fvelimab  5371
  Copyright terms: Public domain W3C validator