NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fvelimab GIF version

Theorem fvelimab 5371
Description: Function value in an image. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (An unnecessary distinct variable restriction was removed by David Abernethy, 17-Dec-2011.) (Contributed by set.mm contributors, 20-Jan-2007.) (Revised by set.mm contributors, 25-Dec-2011.)
Assertion
Ref Expression
fvelimab ((F Fn A B A) → (C (FB) ↔ x B (Fx) = C))
Distinct variable groups:   x,B   x,C   x,F
Allowed substitution hint:   A(x)

Proof of Theorem fvelimab
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 elex 2868 . . 3 (C (FB) → C V)
21anim2i 552 . 2 (((F Fn A B A) C (FB)) → ((F Fn A B A) C V))
3 fvex 5340 . . . . 5 (Fx) V
4 eleq1 2413 . . . . 5 ((Fx) = C → ((Fx) V ↔ C V))
53, 4mpbii 202 . . . 4 ((Fx) = CC V)
65rexlimivw 2735 . . 3 (x B (Fx) = CC V)
76anim2i 552 . 2 (((F Fn A B A) x B (Fx) = C) → ((F Fn A B A) C V))
8 eleq1 2413 . . . . . 6 (y = C → (y (FB) ↔ C (FB)))
9 eqeq2 2362 . . . . . . 7 (y = C → ((Fx) = y ↔ (Fx) = C))
109rexbidv 2636 . . . . . 6 (y = C → (x B (Fx) = yx B (Fx) = C))
118, 10bibi12d 312 . . . . 5 (y = C → ((y (FB) ↔ x B (Fx) = y) ↔ (C (FB) ↔ x B (Fx) = C)))
1211imbi2d 307 . . . 4 (y = C → (((F Fn A B A) → (y (FB) ↔ x B (Fx) = y)) ↔ ((F Fn A B A) → (C (FB) ↔ x B (Fx) = C))))
13 fnfun 5182 . . . . . . 7 (F Fn A → Fun F)
1413adantr 451 . . . . . 6 ((F Fn A B A) → Fun F)
15 fndm 5183 . . . . . . . 8 (F Fn A → dom F = A)
1615sseq2d 3300 . . . . . . 7 (F Fn A → (B dom FB A))
1716biimpar 471 . . . . . 6 ((F Fn A B A) → B dom F)
18 dfimafn 5367 . . . . . 6 ((Fun F B dom F) → (FB) = {y x B (Fx) = y})
1914, 17, 18syl2anc 642 . . . . 5 ((F Fn A B A) → (FB) = {y x B (Fx) = y})
2019abeq2d 2463 . . . 4 ((F Fn A B A) → (y (FB) ↔ x B (Fx) = y))
2112, 20vtoclg 2915 . . 3 (C V → ((F Fn A B A) → (C (FB) ↔ x B (Fx) = C)))
2221impcom 419 . 2 (((F Fn A B A) C V) → (C (FB) ↔ x B (Fx) = C))
232, 7, 22pm5.21nd 868 1 ((F Fn A B A) → (C (FB) ↔ x B (Fx) = C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860   wss 3258  cima 4723  dom cdm 4773  Fun wfun 4776   Fn wfn 4777  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-fv 4796
This theorem is referenced by:  f1elima  5475  ovelimab  5611  dfnnc3  5886
  Copyright terms: Public domain W3C validator