![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fvelimab | GIF version |
Description: Function value in an image. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (An unnecessary distinct variable restriction was removed by David Abernethy, 17-Dec-2011.) (Contributed by set.mm contributors, 20-Jan-2007.) (Revised by set.mm contributors, 25-Dec-2011.) |
Ref | Expression |
---|---|
fvelimab | ⊢ ((F Fn A ∧ B ⊆ A) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2867 | . . 3 ⊢ (C ∈ (F “ B) → C ∈ V) | |
2 | 1 | anim2i 552 | . 2 ⊢ (((F Fn A ∧ B ⊆ A) ∧ C ∈ (F “ B)) → ((F Fn A ∧ B ⊆ A) ∧ C ∈ V)) |
3 | fvex 5339 | . . . . 5 ⊢ (F ‘x) ∈ V | |
4 | eleq1 2413 | . . . . 5 ⊢ ((F ‘x) = C → ((F ‘x) ∈ V ↔ C ∈ V)) | |
5 | 3, 4 | mpbii 202 | . . . 4 ⊢ ((F ‘x) = C → C ∈ V) |
6 | 5 | rexlimivw 2734 | . . 3 ⊢ (∃x ∈ B (F ‘x) = C → C ∈ V) |
7 | 6 | anim2i 552 | . 2 ⊢ (((F Fn A ∧ B ⊆ A) ∧ ∃x ∈ B (F ‘x) = C) → ((F Fn A ∧ B ⊆ A) ∧ C ∈ V)) |
8 | eleq1 2413 | . . . . . 6 ⊢ (y = C → (y ∈ (F “ B) ↔ C ∈ (F “ B))) | |
9 | eqeq2 2362 | . . . . . . 7 ⊢ (y = C → ((F ‘x) = y ↔ (F ‘x) = C)) | |
10 | 9 | rexbidv 2635 | . . . . . 6 ⊢ (y = C → (∃x ∈ B (F ‘x) = y ↔ ∃x ∈ B (F ‘x) = C)) |
11 | 8, 10 | bibi12d 312 | . . . . 5 ⊢ (y = C → ((y ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = y) ↔ (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C))) |
12 | 11 | imbi2d 307 | . . . 4 ⊢ (y = C → (((F Fn A ∧ B ⊆ A) → (y ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = y)) ↔ ((F Fn A ∧ B ⊆ A) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C)))) |
13 | fnfun 5181 | . . . . . . 7 ⊢ (F Fn A → Fun F) | |
14 | 13 | adantr 451 | . . . . . 6 ⊢ ((F Fn A ∧ B ⊆ A) → Fun F) |
15 | fndm 5182 | . . . . . . . 8 ⊢ (F Fn A → dom F = A) | |
16 | 15 | sseq2d 3299 | . . . . . . 7 ⊢ (F Fn A → (B ⊆ dom F ↔ B ⊆ A)) |
17 | 16 | biimpar 471 | . . . . . 6 ⊢ ((F Fn A ∧ B ⊆ A) → B ⊆ dom F) |
18 | dfimafn 5366 | . . . . . 6 ⊢ ((Fun F ∧ B ⊆ dom F) → (F “ B) = {y ∣ ∃x ∈ B (F ‘x) = y}) | |
19 | 14, 17, 18 | syl2anc 642 | . . . . 5 ⊢ ((F Fn A ∧ B ⊆ A) → (F “ B) = {y ∣ ∃x ∈ B (F ‘x) = y}) |
20 | 19 | abeq2d 2462 | . . . 4 ⊢ ((F Fn A ∧ B ⊆ A) → (y ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = y)) |
21 | 12, 20 | vtoclg 2914 | . . 3 ⊢ (C ∈ V → ((F Fn A ∧ B ⊆ A) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C))) |
22 | 21 | impcom 419 | . 2 ⊢ (((F Fn A ∧ B ⊆ A) ∧ C ∈ V) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C)) |
23 | 2, 7, 22 | pm5.21nd 868 | 1 ⊢ ((F Fn A ∧ B ⊆ A) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2615 Vcvv 2859 ⊆ wss 3257 “ cima 4722 dom cdm 4772 Fun wfun 4775 Fn wfn 4776 ‘cfv 4781 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-fv 4795 |
This theorem is referenced by: f1elima 5474 ovelimab 5610 dfnnc3 5885 |
Copyright terms: Public domain | W3C validator |