New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fvelimab | GIF version |
Description: Function value in an image. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (An unnecessary distinct variable restriction was removed by David Abernethy, 17-Dec-2011.) (Contributed by set.mm contributors, 20-Jan-2007.) (Revised by set.mm contributors, 25-Dec-2011.) |
Ref | Expression |
---|---|
fvelimab | ⊢ ((F Fn A ∧ B ⊆ A) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . . 3 ⊢ (C ∈ (F “ B) → C ∈ V) | |
2 | 1 | anim2i 552 | . 2 ⊢ (((F Fn A ∧ B ⊆ A) ∧ C ∈ (F “ B)) → ((F Fn A ∧ B ⊆ A) ∧ C ∈ V)) |
3 | fvex 5340 | . . . . 5 ⊢ (F ‘x) ∈ V | |
4 | eleq1 2413 | . . . . 5 ⊢ ((F ‘x) = C → ((F ‘x) ∈ V ↔ C ∈ V)) | |
5 | 3, 4 | mpbii 202 | . . . 4 ⊢ ((F ‘x) = C → C ∈ V) |
6 | 5 | rexlimivw 2735 | . . 3 ⊢ (∃x ∈ B (F ‘x) = C → C ∈ V) |
7 | 6 | anim2i 552 | . 2 ⊢ (((F Fn A ∧ B ⊆ A) ∧ ∃x ∈ B (F ‘x) = C) → ((F Fn A ∧ B ⊆ A) ∧ C ∈ V)) |
8 | eleq1 2413 | . . . . . 6 ⊢ (y = C → (y ∈ (F “ B) ↔ C ∈ (F “ B))) | |
9 | eqeq2 2362 | . . . . . . 7 ⊢ (y = C → ((F ‘x) = y ↔ (F ‘x) = C)) | |
10 | 9 | rexbidv 2636 | . . . . . 6 ⊢ (y = C → (∃x ∈ B (F ‘x) = y ↔ ∃x ∈ B (F ‘x) = C)) |
11 | 8, 10 | bibi12d 312 | . . . . 5 ⊢ (y = C → ((y ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = y) ↔ (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C))) |
12 | 11 | imbi2d 307 | . . . 4 ⊢ (y = C → (((F Fn A ∧ B ⊆ A) → (y ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = y)) ↔ ((F Fn A ∧ B ⊆ A) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C)))) |
13 | fnfun 5182 | . . . . . . 7 ⊢ (F Fn A → Fun F) | |
14 | 13 | adantr 451 | . . . . . 6 ⊢ ((F Fn A ∧ B ⊆ A) → Fun F) |
15 | fndm 5183 | . . . . . . . 8 ⊢ (F Fn A → dom F = A) | |
16 | 15 | sseq2d 3300 | . . . . . . 7 ⊢ (F Fn A → (B ⊆ dom F ↔ B ⊆ A)) |
17 | 16 | biimpar 471 | . . . . . 6 ⊢ ((F Fn A ∧ B ⊆ A) → B ⊆ dom F) |
18 | dfimafn 5367 | . . . . . 6 ⊢ ((Fun F ∧ B ⊆ dom F) → (F “ B) = {y ∣ ∃x ∈ B (F ‘x) = y}) | |
19 | 14, 17, 18 | syl2anc 642 | . . . . 5 ⊢ ((F Fn A ∧ B ⊆ A) → (F “ B) = {y ∣ ∃x ∈ B (F ‘x) = y}) |
20 | 19 | abeq2d 2463 | . . . 4 ⊢ ((F Fn A ∧ B ⊆ A) → (y ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = y)) |
21 | 12, 20 | vtoclg 2915 | . . 3 ⊢ (C ∈ V → ((F Fn A ∧ B ⊆ A) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C))) |
22 | 21 | impcom 419 | . 2 ⊢ (((F Fn A ∧ B ⊆ A) ∧ C ∈ V) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C)) |
23 | 2, 7, 22 | pm5.21nd 868 | 1 ⊢ ((F Fn A ∧ B ⊆ A) → (C ∈ (F “ B) ↔ ∃x ∈ B (F ‘x) = C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 Vcvv 2860 ⊆ wss 3258 “ cima 4723 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-fv 4796 |
This theorem is referenced by: f1elima 5475 ovelimab 5611 dfnnc3 5886 |
Copyright terms: Public domain | W3C validator |