New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sseq1d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
sseq1d | ⊢ (φ → (A ⊆ C ↔ B ⊆ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 ⊢ (φ → A = B) | |
2 | sseq1 3292 | . 2 ⊢ (A = B → (A ⊆ C ↔ B ⊆ C)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (A ⊆ C ↔ B ⊆ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: sseq12d 3300 eqsstrd 3305 snssg 3844 ssiun2s 4010 elp6 4263 iotassuni 4355 dmxpss 5052 funimass1 5169 feq1 5210 fvimacnvi 5402 fvmptss 5705 clos1eq2 5875 mapsspw 6022 map0e 6023 sbthlem1 6203 |
Copyright terms: Public domain | W3C validator |