NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sseq1d GIF version

Theorem sseq1d 3298
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1 (φA = B)
Assertion
Ref Expression
sseq1d (φ → (A CB C))

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2 (φA = B)
2 sseq1 3292 . 2 (A = B → (A CB C))
31, 2syl 15 1 (φ → (A CB C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642   wss 3257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259
This theorem is referenced by:  sseq12d  3300  eqsstrd  3305  snssg  3844  ssiun2s  4010  elp6  4263  iotassuni  4355  dmxpss  5052  funimass1  5169  feq1  5210  fvimacnvi  5402  fvmptss  5705  clos1eq2  5875  mapsspw  6022  map0e  6023  sbthlem1  6203
  Copyright terms: Public domain W3C validator