New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sseq2 | GIF version |
Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sseq2 | ⊢ (A = B → (C ⊆ A ↔ C ⊆ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3280 | . . . 4 ⊢ (C ⊆ A → (A ⊆ B → C ⊆ B)) | |
2 | 1 | com12 27 | . . 3 ⊢ (A ⊆ B → (C ⊆ A → C ⊆ B)) |
3 | sstr2 3280 | . . . 4 ⊢ (C ⊆ B → (B ⊆ A → C ⊆ A)) | |
4 | 3 | com12 27 | . . 3 ⊢ (B ⊆ A → (C ⊆ B → C ⊆ A)) |
5 | 2, 4 | anim12i 549 | . 2 ⊢ ((A ⊆ B ∧ B ⊆ A) → ((C ⊆ A → C ⊆ B) ∧ (C ⊆ B → C ⊆ A))) |
6 | eqss 3288 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
7 | dfbi2 609 | . 2 ⊢ ((C ⊆ A ↔ C ⊆ B) ↔ ((C ⊆ A → C ⊆ B) ∧ (C ⊆ B → C ⊆ A))) | |
8 | 5, 6, 7 | 3imtr4i 257 | 1 ⊢ (A = B → (C ⊆ A ↔ C ⊆ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: sseq12 3295 sseq2i 3297 sseq2d 3300 syl5sseq 3320 nssne1 3328 psseq2 3358 sseq0 3583 un00 3587 disjpss 3602 pweq 3726 ssintab 3944 ssintub 3945 intmin 3947 p6eq 4239 opkelssetkg 4269 pw1equn 4332 pw1eqadj 4333 ssfin 4471 sfinltfin 4536 vfinspsslem1 4551 brssetg 4758 fununi 5161 funcnvuni 5162 feq3 5213 clos1induct 5881 frd 5923 nclec 6196 lecidg 6197 lecncvg 6200 ltcpw1pwg 6203 sbthlem2 6205 addlec 6209 nc0le1 6217 ce2le 6234 tlenc1c 6241 |
Copyright terms: Public domain | W3C validator |