NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssind GIF version

Theorem ssind 3480
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
ssind.1 (φA B)
ssind.2 (φA C)
Assertion
Ref Expression
ssind (φA (BC))

Proof of Theorem ssind
StepHypRef Expression
1 ssind.1 . 2 (φA B)
2 ssind.2 . 2 (φA C)
3 ssin 3478 . . 3 ((A B A C) ↔ A (BC))
43biimpi 186 . 2 ((A B A C) → A (BC))
51, 2, 4syl2anc 642 1 (φA (BC))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  cin 3209   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator