New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssin | GIF version |
Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssin | ⊢ ((A ⊆ B ∧ A ⊆ C) ↔ A ⊆ (B ∩ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . . . . 5 ⊢ (x ∈ (B ∩ C) ↔ (x ∈ B ∧ x ∈ C)) | |
2 | 1 | imbi2i 303 | . . . 4 ⊢ ((x ∈ A → x ∈ (B ∩ C)) ↔ (x ∈ A → (x ∈ B ∧ x ∈ C))) |
3 | 2 | albii 1566 | . . 3 ⊢ (∀x(x ∈ A → x ∈ (B ∩ C)) ↔ ∀x(x ∈ A → (x ∈ B ∧ x ∈ C))) |
4 | jcab 833 | . . . 4 ⊢ ((x ∈ A → (x ∈ B ∧ x ∈ C)) ↔ ((x ∈ A → x ∈ B) ∧ (x ∈ A → x ∈ C))) | |
5 | 4 | albii 1566 | . . 3 ⊢ (∀x(x ∈ A → (x ∈ B ∧ x ∈ C)) ↔ ∀x((x ∈ A → x ∈ B) ∧ (x ∈ A → x ∈ C))) |
6 | 19.26 1593 | . . 3 ⊢ (∀x((x ∈ A → x ∈ B) ∧ (x ∈ A → x ∈ C)) ↔ (∀x(x ∈ A → x ∈ B) ∧ ∀x(x ∈ A → x ∈ C))) | |
7 | 3, 5, 6 | 3bitrri 263 | . 2 ⊢ ((∀x(x ∈ A → x ∈ B) ∧ ∀x(x ∈ A → x ∈ C)) ↔ ∀x(x ∈ A → x ∈ (B ∩ C))) |
8 | dfss2 3263 | . . 3 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) | |
9 | dfss2 3263 | . . 3 ⊢ (A ⊆ C ↔ ∀x(x ∈ A → x ∈ C)) | |
10 | 8, 9 | anbi12i 678 | . 2 ⊢ ((A ⊆ B ∧ A ⊆ C) ↔ (∀x(x ∈ A → x ∈ B) ∧ ∀x(x ∈ A → x ∈ C))) |
11 | dfss2 3263 | . 2 ⊢ (A ⊆ (B ∩ C) ↔ ∀x(x ∈ A → x ∈ (B ∩ C))) | |
12 | 7, 10, 11 | 3bitr4i 268 | 1 ⊢ ((A ⊆ B ∧ A ⊆ C) ↔ A ⊆ (B ∩ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 ∩ cin 3209 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: ssini 3479 ssind 3480 uneqin 3507 disjpss 3602 fin 5247 clos1induct 5881 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |