| Step | Hyp | Ref
| Expression |
| 1 | | an4 797 |
. . 3
⊢ (((A ≠ ∅ ∧ ∃x ∈ Nn B = ((A +c x) +c 1c)) ∧ (B ≠ ∅ ∧ ∃y ∈ Nn C = ((B
+c y)
+c 1c))) ↔ ((A ≠ ∅ ∧ B ≠ ∅) ∧ (∃x ∈ Nn B = ((A
+c x)
+c 1c) ∧
∃y ∈ Nn C = ((B
+c y)
+c 1c)))) |
| 2 | | simpl 443 |
. . . . 5
⊢ ((A ≠ ∅ ∧ B ≠ ∅) → A
≠ ∅) |
| 3 | 2 | a1i 10 |
. . . 4
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → ((A ≠
∅ ∧
B ≠ ∅) → A
≠ ∅)) |
| 4 | | reeanv 2779 |
. . . . 5
⊢ (∃x ∈ Nn ∃y ∈ Nn (B = ((A
+c x)
+c 1c) ∧
C = ((B
+c y)
+c 1c)) ↔ (∃x ∈ Nn B = ((A
+c x)
+c 1c) ∧
∃y ∈ Nn C = ((B
+c y)
+c 1c))) |
| 5 | | addccom 4407 |
. . . . . . . . . 10
⊢
(1c +c y) = (y
+c 1c) |
| 6 | | peano2 4404 |
. . . . . . . . . 10
⊢ (y ∈ Nn → (y
+c 1c) ∈
Nn ) |
| 7 | 5, 6 | syl5eqel 2437 |
. . . . . . . . 9
⊢ (y ∈ Nn → (1c +c
y) ∈
Nn ) |
| 8 | | nncaddccl 4420 |
. . . . . . . . 9
⊢ ((x ∈ Nn ∧
(1c +c y) ∈ Nn ) → (x
+c (1c +c y)) ∈ Nn ) |
| 9 | 7, 8 | sylan2 460 |
. . . . . . . 8
⊢ ((x ∈ Nn ∧ y ∈ Nn ) → (x
+c (1c +c y)) ∈ Nn ) |
| 10 | 9 | adantl 452 |
. . . . . . 7
⊢ (((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) ∧ (x ∈ Nn ∧ y ∈ Nn )) → (x
+c (1c +c y)) ∈ Nn ) |
| 11 | | addceq1 4384 |
. . . . . . . . . 10
⊢ (B = ((A
+c x)
+c 1c) → (B +c y) = (((A
+c x)
+c 1c) +c y)) |
| 12 | | addceq1 4384 |
. . . . . . . . . 10
⊢ ((B +c y) = (((A
+c x)
+c 1c) +c y) → ((B
+c y)
+c 1c) = ((((A +c x) +c 1c)
+c y)
+c 1c)) |
| 13 | 11, 12 | syl 15 |
. . . . . . . . 9
⊢ (B = ((A
+c x)
+c 1c) → ((B +c y) +c 1c) =
((((A +c x) +c 1c)
+c y)
+c 1c)) |
| 14 | 13 | eqeq2d 2364 |
. . . . . . . 8
⊢ (B = ((A
+c x)
+c 1c) → (C = ((B
+c y)
+c 1c) ↔ C = ((((A
+c x)
+c 1c) +c y) +c
1c))) |
| 15 | 14 | biimpa 470 |
. . . . . . 7
⊢ ((B = ((A
+c x)
+c 1c) ∧
C = ((B
+c y)
+c 1c)) → C = ((((A
+c x)
+c 1c) +c y) +c
1c)) |
| 16 | | addceq2 4385 |
. . . . . . . . . . . 12
⊢ (z = (x
+c (1c +c y)) → (A
+c z) = (A +c (x +c (1c
+c y)))) |
| 17 | | addcass 4416 |
. . . . . . . . . . . . 13
⊢ (((A +c x) +c 1c)
+c y) = ((A +c x) +c (1c
+c y)) |
| 18 | | addcass 4416 |
. . . . . . . . . . . . 13
⊢ ((A +c x) +c (1c
+c y)) = (A +c (x +c (1c
+c y))) |
| 19 | 17, 18 | eqtri 2373 |
. . . . . . . . . . . 12
⊢ (((A +c x) +c 1c)
+c y) = (A +c (x +c (1c
+c y))) |
| 20 | 16, 19 | syl6eqr 2403 |
. . . . . . . . . . 11
⊢ (z = (x
+c (1c +c y)) → (A
+c z) = (((A +c x) +c 1c)
+c y)) |
| 21 | | addceq1 4384 |
. . . . . . . . . . 11
⊢ ((A +c z) = (((A
+c x)
+c 1c) +c y) → ((A
+c z)
+c 1c) = ((((A +c x) +c 1c)
+c y)
+c 1c)) |
| 22 | 20, 21 | syl 15 |
. . . . . . . . . 10
⊢ (z = (x
+c (1c +c y)) → ((A
+c z)
+c 1c) = ((((A +c x) +c 1c)
+c y)
+c 1c)) |
| 23 | 22 | eqeq2d 2364 |
. . . . . . . . 9
⊢ (z = (x
+c (1c +c y)) → (C =
((A +c z) +c 1c) ↔
C = ((((A +c x) +c 1c)
+c y)
+c 1c))) |
| 24 | 23 | rspcev 2956 |
. . . . . . . 8
⊢ (((x +c (1c
+c y)) ∈ Nn ∧ C =
((((A +c x) +c 1c)
+c y)
+c 1c)) → ∃z ∈ Nn C = ((A
+c z)
+c 1c)) |
| 25 | 24 | ex 423 |
. . . . . . 7
⊢ ((x +c (1c
+c y)) ∈ Nn → (C = ((((A
+c x)
+c 1c) +c y) +c 1c) →
∃z ∈ Nn C = ((A
+c z)
+c 1c))) |
| 26 | 10, 15, 25 | syl2im 34 |
. . . . . 6
⊢ (((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) ∧ (x ∈ Nn ∧ y ∈ Nn )) → ((B =
((A +c x) +c 1c) ∧ C = ((B +c y) +c 1c))
→ ∃z ∈ Nn C = ((A +c z) +c
1c))) |
| 27 | 26 | rexlimdvva 2746 |
. . . . 5
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (∃x ∈ Nn ∃y ∈ Nn (B = ((A
+c x)
+c 1c) ∧
C = ((B
+c y)
+c 1c)) → ∃z ∈ Nn C = ((A
+c z)
+c 1c))) |
| 28 | 4, 27 | syl5bir 209 |
. . . 4
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → ((∃x ∈ Nn B = ((A
+c x)
+c 1c) ∧
∃y ∈ Nn C = ((B
+c y)
+c 1c)) → ∃z ∈ Nn C = ((A
+c z)
+c 1c))) |
| 29 | 3, 28 | anim12d 546 |
. . 3
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (((A
≠ ∅ ∧
B ≠ ∅) ∧ (∃x ∈ Nn B = ((A
+c x)
+c 1c) ∧
∃y ∈ Nn C = ((B
+c y)
+c 1c))) → (A ≠ ∅ ∧ ∃z ∈ Nn C = ((A +c z) +c
1c)))) |
| 30 | 1, 29 | syl5bi 208 |
. 2
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (((A
≠ ∅ ∧
∃x ∈ Nn B = ((A
+c x)
+c 1c)) ∧
(B ≠ ∅ ∧ ∃y ∈ Nn C = ((B
+c y)
+c 1c))) → (A ≠ ∅ ∧ ∃z ∈ Nn C = ((A +c z) +c
1c)))) |
| 31 | | opkltfing 4450 |
. . . 4
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (⟪A, B⟫
∈ <fin ↔ (A ≠ ∅ ∧ ∃x ∈ Nn B = ((A +c x) +c
1c)))) |
| 32 | 31 | 3adant3 975 |
. . 3
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (⟪A, B⟫
∈ <fin ↔ (A ≠ ∅ ∧ ∃x ∈ Nn B = ((A +c x) +c
1c)))) |
| 33 | | opkltfing 4450 |
. . . 4
⊢ ((B ∈ Nn ∧ C ∈ Nn ) → (⟪B, C⟫
∈ <fin ↔ (B ≠ ∅ ∧ ∃y ∈ Nn C = ((B +c y) +c
1c)))) |
| 34 | 33 | 3adant1 973 |
. . 3
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (⟪B, C⟫
∈ <fin ↔ (B ≠ ∅ ∧ ∃y ∈ Nn C = ((B +c y) +c
1c)))) |
| 35 | 32, 34 | anbi12d 691 |
. 2
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → ((⟪A, B⟫
∈ <fin ∧ ⟪B,
C⟫ ∈ <fin ) ↔ ((A ≠ ∅ ∧ ∃x ∈ Nn B = ((A +c x) +c 1c)) ∧ (B ≠ ∅ ∧ ∃y ∈ Nn C = ((B
+c y)
+c 1c))))) |
| 36 | | opkltfing 4450 |
. . 3
⊢ ((A ∈ Nn ∧ C ∈ Nn ) → (⟪A, C⟫
∈ <fin ↔ (A ≠ ∅ ∧ ∃z ∈ Nn C = ((A +c z) +c
1c)))) |
| 37 | 36 | 3adant2 974 |
. 2
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (⟪A, C⟫
∈ <fin ↔ (A ≠ ∅ ∧ ∃z ∈ Nn C = ((A +c z) +c
1c)))) |
| 38 | 30, 35, 37 | 3imtr4d 259 |
1
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → ((⟪A, B⟫
∈ <fin ∧ ⟪B,
C⟫ ∈ <fin ) → ⟪A, C⟫
∈ <fin )) |