New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl2an | GIF version |
Description: A double syllogism inference. (Contributed by NM, 31-Jan-1997.) |
Ref | Expression |
---|---|
syl2an.1 | ⊢ (φ → ψ) |
syl2an.2 | ⊢ (τ → χ) |
syl2an.3 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
syl2an | ⊢ ((φ ∧ τ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an.2 | . 2 ⊢ (τ → χ) | |
2 | syl2an.1 | . . 3 ⊢ (φ → ψ) | |
3 | syl2an.3 | . . 3 ⊢ ((ψ ∧ χ) → θ) | |
4 | 2, 3 | sylan 457 | . 2 ⊢ ((φ ∧ χ) → θ) |
5 | 1, 4 | sylan2 460 | 1 ⊢ ((φ ∧ τ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: syl2anr 464 anim12i 549 ax11indalem 2197 eqeqan12d 2368 sylan9eq 2405 csbcomg 3160 sylan9ss 3286 ssconb 3400 ineqan12d 3460 ifpr 3775 unexg 4102 opkelopkabg 4246 opkelcokg 4262 opkelimagekg 4272 xpkexg 4289 cokexg 4310 ncfinlower 4484 tfindi 4497 tfinlefin 4503 vfinspsslem1 4551 opexg 4588 copsex2g 4610 breqan12d 4655 coexg 4750 opbrop 4842 dmpropg 5069 xpexg 5115 funssres 5145 fnco 5192 fcnvres 5244 fodmrnu 5278 fvun1 5380 fconst2g 5453 isomin 5497 oveqan12d 5542 ovg 5602 txpexg 5785 cupvalg 5813 pprodexg 5838 ovcross 5846 qsexg 5983 mapvalg 6010 pmvalg 6011 mapsn 6027 xpassen 6058 enmap1lem5 6074 enprmaplem3 6079 ncaddccl 6145 ncdisjeq 6149 ovcelem1 6172 cenc 6182 sbthlem1 6204 sbthlem3 6206 lectr 6212 leconnnc 6219 tlecg 6231 nmembers1lem3 6271 nnc3n3p1 6279 nnc3n3p2 6280 nnc3p1n3p2 6281 nchoicelem5 6294 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |