Proof of Theorem fvopab4t
Step | Hyp | Ref
| Expression |
1 | | elex 2868 |
. . 3
⊢ (C ∈ V → C ∈ V) |
2 | 1 | anim2i 552 |
. 2
⊢ ((A ∈ D ∧ C ∈ V) → (A
∈ D ∧ C ∈ V)) |
3 | | funopab4 5142 |
. . . 4
⊢ Fun {〈x, y〉 ∣ (x ∈ D ∧ y = B)} |
4 | | simp2 956 |
. . . . . 6
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)}) |
5 | 4 | 19.21bi 1758 |
. . . . 5
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → F
= {〈x,
y〉 ∣ (x ∈ D ∧ y = B)}) |
6 | 5 | funeqd 5130 |
. . . 4
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → (Fun F ↔ Fun {〈x, y〉 ∣ (x ∈ D ∧ y = B)})) |
7 | 3, 6 | mpbiri 224 |
. . 3
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → Fun F) |
8 | | simp3l 983 |
. . . . 5
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → A
∈ D) |
9 | | eqidd 2354 |
. . . . 5
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → C
= C) |
10 | | eleq1 2413 |
. . . . . . . . . . 11
⊢ (x = A →
(x ∈
D ↔ A ∈ D)) |
11 | | eqeq2 2362 |
. . . . . . . . . . 11
⊢ (B = C →
(y = B
↔ y = C)) |
12 | 10, 11 | bi2anan9 843 |
. . . . . . . . . 10
⊢ ((x = A ∧ B = C) → ((x
∈ D ∧ y = B) ↔ (A
∈ D ∧ y = C))) |
13 | 12 | ex 423 |
. . . . . . . . 9
⊢ (x = A →
(B = C
→ ((x ∈ D ∧ y = B) ↔ (A
∈ D ∧ y = C)))) |
14 | 13 | a2i 12 |
. . . . . . . 8
⊢ ((x = A →
B = C)
→ (x = A → ((x
∈ D ∧ y = B) ↔ (A
∈ D ∧ y = C)))) |
15 | 14 | 2alimi 1560 |
. . . . . . 7
⊢ (∀x∀y(x = A →
B = C)
→ ∀x∀y(x = A → ((x
∈ D ∧ y = B) ↔ (A
∈ D ∧ y = C)))) |
16 | 15 | 3ad2ant1 976 |
. . . . . 6
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → ∀x∀y(x = A →
((x ∈
D ∧
y = B)
↔ (A ∈ D ∧ y = C)))) |
17 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (y = C →
(y = C
↔ C = C)) |
18 | 17 | anbi2d 684 |
. . . . . . . 8
⊢ (y = C →
((A ∈
D ∧
y = C)
↔ (A ∈ D ∧ C = C))) |
19 | 18 | gen2 1547 |
. . . . . . 7
⊢ ∀x∀y(y = C →
((A ∈
D ∧
y = C)
↔ (A ∈ D ∧ C = C))) |
20 | 19 | a1i 10 |
. . . . . 6
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → ∀x∀y(y = C →
((A ∈
D ∧
y = C)
↔ (A ∈ D ∧ C = C)))) |
21 | | simp3 957 |
. . . . . 6
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → (A
∈ D ∧ C ∈ V)) |
22 | | opelopabt 4700 |
. . . . . 6
⊢ ((∀x∀y(x = A →
((x ∈
D ∧
y = B)
↔ (A ∈ D ∧ y = C))) ∧ ∀x∀y(y = C →
((A ∈
D ∧
y = C)
↔ (A ∈ D ∧ C = C))) ∧ (A ∈ D ∧ C ∈ V)) →
(〈A,
C〉 ∈ {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ↔
(A ∈
D ∧
C = C))) |
23 | 16, 20, 21, 22 | syl3anc 1182 |
. . . . 5
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → (〈A, C〉 ∈ {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ↔
(A ∈
D ∧
C = C))) |
24 | 8, 9, 23 | mpbir2and 888 |
. . . 4
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → 〈A, C〉 ∈ {〈x, y〉 ∣ (x ∈ D ∧ y = B)}) |
25 | 24, 5 | eleqtrrd 2430 |
. . 3
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → 〈A, C〉 ∈ F) |
26 | | funopfv 5358 |
. . 3
⊢ (Fun F → (〈A, C〉 ∈ F →
(F ‘A) = C)) |
27 | 7, 25, 26 | sylc 56 |
. 2
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) → (F
‘A) = C) |
28 | 2, 27 | syl3an3 1217 |
1
⊢ ((∀x∀y(x = A →
B = C)
∧ ∀x F = {〈x, y〉 ∣ (x ∈ D ∧ y = B)} ∧ (A ∈ D ∧ C ∈ V)) →
(F ‘A) = C) |