NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5req GIF version

Theorem syl5req 2398
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
syl5req.1 A = B
syl5req.2 (φB = C)
Assertion
Ref Expression
syl5req (φC = A)

Proof of Theorem syl5req
StepHypRef Expression
1 syl5req.1 . . 3 A = B
2 syl5req.2 . . 3 (φB = C)
31, 2syl5eq 2397 . 2 (φA = C)
43eqcomd 2358 1 (φC = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  syl5reqr  2400  nnsucelrlem3  4427  tfinprop  4490  funcnvres  5166
  Copyright terms: Public domain W3C validator