New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5eqr.1 | ⊢ B = A |
syl5eqr.2 | ⊢ (φ → B = C) |
Ref | Expression |
---|---|
syl5eqr | ⊢ (φ → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqr.1 | . . 3 ⊢ B = A | |
2 | 1 | eqcomi 2357 | . 2 ⊢ A = B |
3 | syl5eqr.2 | . 2 ⊢ (φ → B = C) | |
4 | 2, 3 | syl5eq 2397 | 1 ⊢ (φ → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr3g 2408 csbeq1a 3144 ssdifeq0 3632 pw1equn 4331 sfinltfin 4535 vfintle 4546 phialllem2 4617 opabbi2dv 4867 fcoi1 5240 f1imacnv 5302 foimacnv 5303 f1ococnv1 5310 funfv 5375 fsn2 5434 funiunfvf 5468 f1ocnvfv2 5477 brcomposeg 5819 mapsn 6026 enpw1 6062 enmap2 6068 enmap1lem5 6073 ncdisjun 6136 |
Copyright terms: Public domain | W3C validator |