New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5eqr.1 | ⊢ B = A |
syl5eqr.2 | ⊢ (φ → B = C) |
Ref | Expression |
---|---|
syl5eqr | ⊢ (φ → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqr.1 | . . 3 ⊢ B = A | |
2 | 1 | eqcomi 2357 | . 2 ⊢ A = B |
3 | syl5eqr.2 | . 2 ⊢ (φ → B = C) | |
4 | 2, 3 | syl5eq 2397 | 1 ⊢ (φ → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr3g 2408 csbeq1a 3145 ssdifeq0 3633 pw1equn 4332 sfinltfin 4536 vfintle 4547 phialllem2 4618 opabbi2dv 4868 fcoi1 5241 f1imacnv 5303 foimacnv 5304 f1ococnv1 5311 funfv 5376 fsn2 5435 funiunfvf 5469 f1ocnvfv2 5478 brcomposeg 5820 mapsn 6027 enpw1 6063 enmap2 6069 enmap1lem5 6074 ncdisjun 6137 |
Copyright terms: Public domain | W3C validator |