NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5reqr GIF version

Theorem syl5reqr 2400
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
syl5reqr.1 B = A
syl5reqr.2 (φB = C)
Assertion
Ref Expression
syl5reqr (φC = A)

Proof of Theorem syl5reqr
StepHypRef Expression
1 syl5reqr.1 . . 3 B = A
21eqcomi 2357 . 2 A = B
3 syl5reqr.2 . 2 (φB = C)
42, 3syl5req 2398 1 (φC = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  vfin1cltv  4548  foima  5275  f1imacnv  5303  f1o00  5318  fmpt  5693  enmap1lem3  6072  dflec2  6211
  Copyright terms: Public domain W3C validator