New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5reqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
syl5reqr.1 | ⊢ B = A |
syl5reqr.2 | ⊢ (φ → B = C) |
Ref | Expression |
---|---|
syl5reqr | ⊢ (φ → C = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5reqr.1 | . . 3 ⊢ B = A | |
2 | 1 | eqcomi 2357 | . 2 ⊢ A = B |
3 | syl5reqr.2 | . 2 ⊢ (φ → B = C) | |
4 | 2, 3 | syl5req 2398 | 1 ⊢ (φ → C = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: vfin1cltv 4548 foima 5275 f1imacnv 5303 f1o00 5318 fmpt 5693 enmap1lem3 6072 dflec2 6211 |
Copyright terms: Public domain | W3C validator |