NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspc3v GIF version

Theorem rspc3v 2965
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1 (x = A → (φχ))
rspc3v.2 (y = B → (χθ))
rspc3v.3 (z = C → (θψ))
Assertion
Ref Expression
rspc3v ((A R B S C T) → (x R y S z T φψ))
Distinct variable groups:   ψ,z   χ,x   θ,y   x,y,z,A   y,B,z   z,C   x,R   x,S,y   x,T,y,z
Allowed substitution hints:   φ(x,y,z)   ψ(x,y)   χ(y,z)   θ(x,z)   B(x)   C(x,y)   R(y,z)   S(z)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5 (x = A → (φχ))
21ralbidv 2635 . . . 4 (x = A → (z T φz T χ))
3 rspc3v.2 . . . . 5 (y = B → (χθ))
43ralbidv 2635 . . . 4 (y = B → (z T χz T θ))
52, 4rspc2v 2962 . . 3 ((A R B S) → (x R y S z T φz T θ))
6 rspc3v.3 . . . 4 (z = C → (θψ))
76rspcv 2952 . . 3 (C T → (z T θψ))
85, 7sylan9 638 . 2 (((A R B S) C T) → (x R y S z T φψ))
983impa 1146 1 ((A R B S C T) → (x R y S z T φψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934   = wceq 1642   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862
This theorem is referenced by:  caovassg  5627  caovdig  5633  caovdirg  5634  trd  5922
  Copyright terms: Public domain W3C validator