New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rspc3v | GIF version |
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.) |
Ref | Expression |
---|---|
rspc3v.1 | ⊢ (x = A → (φ ↔ χ)) |
rspc3v.2 | ⊢ (y = B → (χ ↔ θ)) |
rspc3v.3 | ⊢ (z = C → (θ ↔ ψ)) |
Ref | Expression |
---|---|
rspc3v | ⊢ ((A ∈ R ∧ B ∈ S ∧ C ∈ T) → (∀x ∈ R ∀y ∈ S ∀z ∈ T φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc3v.1 | . . . . 5 ⊢ (x = A → (φ ↔ χ)) | |
2 | 1 | ralbidv 2635 | . . . 4 ⊢ (x = A → (∀z ∈ T φ ↔ ∀z ∈ T χ)) |
3 | rspc3v.2 | . . . . 5 ⊢ (y = B → (χ ↔ θ)) | |
4 | 3 | ralbidv 2635 | . . . 4 ⊢ (y = B → (∀z ∈ T χ ↔ ∀z ∈ T θ)) |
5 | 2, 4 | rspc2v 2962 | . . 3 ⊢ ((A ∈ R ∧ B ∈ S) → (∀x ∈ R ∀y ∈ S ∀z ∈ T φ → ∀z ∈ T θ)) |
6 | rspc3v.3 | . . . 4 ⊢ (z = C → (θ ↔ ψ)) | |
7 | 6 | rspcv 2952 | . . 3 ⊢ (C ∈ T → (∀z ∈ T θ → ψ)) |
8 | 5, 7 | sylan9 638 | . 2 ⊢ (((A ∈ R ∧ B ∈ S) ∧ C ∈ T) → (∀x ∈ R ∀y ∈ S ∀z ∈ T φ → ψ)) |
9 | 8 | 3impa 1146 | 1 ⊢ ((A ∈ R ∧ B ∈ S ∧ C ∈ T) → (∀x ∈ R ∀y ∈ S ∀z ∈ T φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 |
This theorem is referenced by: caovassg 5627 caovdig 5633 caovdirg 5634 trd 5922 |
Copyright terms: Public domain | W3C validator |