NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  un12 GIF version

Theorem un12 3422
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un12 (A ∪ (BC)) = (B ∪ (AC))

Proof of Theorem un12
StepHypRef Expression
1 uncom 3409 . . 3 (AB) = (BA)
21uneq1i 3415 . 2 ((AB) ∪ C) = ((BA) ∪ C)
3 unass 3421 . 2 ((AB) ∪ C) = (A ∪ (BC))
4 unass 3421 . 2 ((BA) ∪ C) = (B ∪ (AC))
52, 3, 43eqtr3i 2381 1 (A ∪ (BC)) = (B ∪ (AC))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  cun 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215
This theorem is referenced by:  un23  3423  un4  3424
  Copyright terms: Public domain W3C validator