New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uncom | GIF version |
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uncom | ⊢ (A ∪ B) = (B ∪ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 376 | . . 3 ⊢ ((x ∈ A ∨ x ∈ B) ↔ (x ∈ B ∨ x ∈ A)) | |
2 | elun 3221 | . . 3 ⊢ (x ∈ (B ∪ A) ↔ (x ∈ B ∨ x ∈ A)) | |
3 | 1, 2 | bitr4i 243 | . 2 ⊢ ((x ∈ A ∨ x ∈ B) ↔ x ∈ (B ∪ A)) |
4 | 3 | uneqri 3407 | 1 ⊢ (A ∪ B) = (B ∪ A) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 357 = wceq 1642 ∈ wcel 1710 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: equncom 3410 uneq2 3413 un12 3422 un23 3423 ssun2 3428 unss2 3435 ssequn2 3437 undir 3505 unineq 3506 dif32 3518 symdifcom 3543 disjpss 3602 undif1 3626 undif2 3627 difcom 3635 uneqdifeq 3639 dfif4 3674 dfif5 3675 prcom 3799 tpass 3819 difsnid 3855 ssunsn2 3866 sspr 3870 sstp 3871 pwadjoin 4120 addccom 4407 sfinltfin 4536 phialllem2 4618 fvun2 5381 fvsnun2 5449 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |