New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unissel | GIF version |
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
unissel | ⊢ ((∪A ⊆ B ∧ B ∈ A) → ∪A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((∪A ⊆ B ∧ B ∈ A) → ∪A ⊆ B) | |
2 | elssuni 3920 | . . 3 ⊢ (B ∈ A → B ⊆ ∪A) | |
3 | 2 | adantl 452 | . 2 ⊢ ((∪A ⊆ B ∧ B ∈ A) → B ⊆ ∪A) |
4 | 1, 3 | eqssd 3290 | 1 ⊢ ((∪A ⊆ B ∧ B ∈ A) → ∪A = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-uni 3893 |
This theorem is referenced by: elpwuni 4054 |
Copyright terms: Public domain | W3C validator |