New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqssd | GIF version |
Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
Ref | Expression |
---|---|
eqssd.1 | ⊢ (φ → A ⊆ B) |
eqssd.2 | ⊢ (φ → B ⊆ A) |
Ref | Expression |
---|---|
eqssd | ⊢ (φ → A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssd.1 | . 2 ⊢ (φ → A ⊆ B) | |
2 | eqssd.2 | . 2 ⊢ (φ → B ⊆ A) | |
3 | eqss 3288 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
4 | 1, 2, 3 | sylanbrc 645 | 1 ⊢ (φ → A = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: uneqdifeq 3639 unissel 3921 intmin 3947 unissint 3951 int0el 3958 vfinspeqtncv 4554 phi11 4597 phi011 4600 dmcosseq 4974 ssreseq 4998 fimacnv 5412 dff3 5421 clos1nrel 5887 enadjlem1 6060 enmap2lem5 6068 enmap1lem5 6074 enprmaplem6 6082 sbthlem1 6204 nchoicelem6 6295 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |