New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqssd | GIF version |
Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
Ref | Expression |
---|---|
eqssd.1 | ⊢ (φ → A ⊆ B) |
eqssd.2 | ⊢ (φ → B ⊆ A) |
Ref | Expression |
---|---|
eqssd | ⊢ (φ → A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssd.1 | . 2 ⊢ (φ → A ⊆ B) | |
2 | eqssd.2 | . 2 ⊢ (φ → B ⊆ A) | |
3 | eqss 3287 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
4 | 1, 2, 3 | sylanbrc 645 | 1 ⊢ (φ → A = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: uneqdifeq 3638 unissel 3920 intmin 3946 unissint 3950 int0el 3957 vfinspeqtncv 4553 phi11 4596 phi011 4599 dmcosseq 4973 ssreseq 4997 fimacnv 5411 dff3 5420 clos1nrel 5886 enadjlem1 6059 enmap2lem5 6067 enmap1lem5 6073 enprmaplem6 6081 sbthlem1 6203 nchoicelem6 6294 dmfrec 6316 |
Copyright terms: Public domain | W3C validator |