New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elssuni | GIF version |
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
elssuni | ⊢ (A ∈ B → A ⊆ ∪B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3291 | . 2 ⊢ A ⊆ A | |
2 | ssuni 3914 | . 2 ⊢ ((A ⊆ A ∧ A ∈ B) → A ⊆ ∪B) | |
3 | 1, 2 | mpan 651 | 1 ⊢ (A ∈ B → A ⊆ ∪B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ⊆ wss 3258 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-uni 3893 |
This theorem is referenced by: unissel 3921 ssunieq 3925 ncssfin 6152 |
Copyright terms: Public domain | W3C validator |