NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elssuni GIF version

Theorem elssuni 3920
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elssuni (A BA B)

Proof of Theorem elssuni
StepHypRef Expression
1 ssid 3291 . 2 A A
2 ssuni 3914 . 2 ((A A A B) → A B)
31, 2mpan 651 1 (A BA B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710   wss 3258  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-uni 3893
This theorem is referenced by:  unissel  3921  ssunieq  3925  ncssfin  6152
  Copyright terms: Public domain W3C validator