New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtocldf | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 | ⊢ (φ → A ∈ V) |
vtocld.2 | ⊢ ((φ ∧ x = A) → (ψ ↔ χ)) |
vtocld.3 | ⊢ (φ → ψ) |
vtocldf.4 | ⊢ Ⅎxφ |
vtocldf.5 | ⊢ (φ → ℲxA) |
vtocldf.6 | ⊢ (φ → Ⅎxχ) |
Ref | Expression |
---|---|
vtocldf | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocldf.5 | . 2 ⊢ (φ → ℲxA) | |
2 | vtocldf.6 | . 2 ⊢ (φ → Ⅎxχ) | |
3 | vtocldf.4 | . . 3 ⊢ Ⅎxφ | |
4 | vtocld.2 | . . . 4 ⊢ ((φ ∧ x = A) → (ψ ↔ χ)) | |
5 | 4 | ex 423 | . . 3 ⊢ (φ → (x = A → (ψ ↔ χ))) |
6 | 3, 5 | alrimi 1765 | . 2 ⊢ (φ → ∀x(x = A → (ψ ↔ χ))) |
7 | vtocld.3 | . . 3 ⊢ (φ → ψ) | |
8 | 3, 7 | alrimi 1765 | . 2 ⊢ (φ → ∀xψ) |
9 | vtocld.1 | . 2 ⊢ (φ → A ∈ V) | |
10 | vtoclgft 2906 | . 2 ⊢ (((ℲxA ∧ Ⅎxχ) ∧ (∀x(x = A → (ψ ↔ χ)) ∧ ∀xψ) ∧ A ∈ V) → χ) | |
11 | 1, 2, 6, 8, 9, 10 | syl221anc 1193 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: vtocld 2908 |
Copyright terms: Public domain | W3C validator |