NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  vtocld GIF version

Theorem vtocld 2908
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1 (φA V)
vtocld.2 ((φ x = A) → (ψχ))
vtocld.3 (φψ)
Assertion
Ref Expression
vtocld (φχ)
Distinct variable groups:   x,A   φ,x   χ,x
Allowed substitution hints:   ψ(x)   V(x)

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2 (φA V)
2 vtocld.2 . 2 ((φ x = A) → (ψχ))
3 vtocld.3 . 2 (φψ)
4 nfv 1619 . 2 xφ
5 nfcvd 2491 . 2 (φxA)
6 nfvd 1620 . 2 (φ → Ⅎxχ)
71, 2, 3, 4, 5, 6vtocldf 2907 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator