QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  df2le1 GIF version

Theorem df2le1 135
Description: Alternate definition of "less than or equal to". (Contributed by NM, 27-Aug-1997.)
Hypothesis
Ref Expression
df2le1.1 (ab) = a
Assertion
Ref Expression
df2le1 ab

Proof of Theorem df2le1
StepHypRef Expression
1 df2le1.1 . . 3 (ab) = a
21leao 124 . 2 (ab) = b
32df-le1 130 1 ab
Colors of variables: term
Syntax hints:   = wb 1  wle 2  wa 7
This theorem was proved from axioms:  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-le1 130
This theorem is referenced by:  letr  137  lbtr  139  lel  151  leran  153  lecon  154  leo  158  i3le  515  u1lemle2  715  u2lemle2  716  u4lemle2  718  u5lemle2  719  bi4  840  gomaex3lem2  915
  Copyright terms: Public domain W3C validator