Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df2le1 | GIF version |
Description: Alternate definition of "less than or equal to". (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
df2le1.1 | (a ∩ b) = a |
Ref | Expression |
---|---|
df2le1 | a ≤ b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2le1.1 | . . 3 (a ∩ b) = a | |
2 | 1 | leao 124 | . 2 (a ∪ b) = b |
3 | 2 | df-le1 130 | 1 a ≤ b |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∩ wa 7 |
This theorem was proved from axioms: ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 |
This theorem is referenced by: letr 137 lbtr 139 lel 151 leran 153 lecon 154 leo 158 i3le 515 u1lemle2 715 u2lemle2 716 u4lemle2 718 u5lemle2 719 bi4 840 gomaex3lem2 915 |
Copyright terms: Public domain | W3C validator |