Proof of Theorem u2lemle2
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . . 7
(b ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ b) |
2 | 1 | lan 77 |
. . . . . 6
(a ∩ (b ∪ (a⊥ ∩ b⊥ ))) = (a ∩ ((a⊥ ∩ b⊥ ) ∪ b)) |
3 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C a⊥ |
4 | 3 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C a |
5 | | coman2 186 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C b⊥ |
6 | 5 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C b |
7 | 4, 6 | fh2 470 |
. . . . . . 7
(a ∩ ((a⊥ ∩ b⊥ ) ∪ b)) = ((a ∩
(a⊥ ∩ b⊥ )) ∪ (a ∩ b)) |
8 | | ancom 74 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
9 | | anass 76 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
10 | | dff 101 |
. . . . . . . . . . . . 13
0 = (a ∩ a⊥ ) |
11 | 10 | ax-r1 35 |
. . . . . . . . . . . 12
(a ∩ a⊥ ) = 0 |
12 | 11 | lan 77 |
. . . . . . . . . . 11
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
13 | | an0 108 |
. . . . . . . . . . 11
(b⊥ ∩ 0) =
0 |
14 | 12, 13 | ax-r2 36 |
. . . . . . . . . 10
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
15 | 8, 9, 14 | 3tr2 64 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
16 | 15 | ax-r5 38 |
. . . . . . . 8
((a ∩ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) = (0
∪ (a ∩ b)) |
17 | | ax-a2 31 |
. . . . . . . 8
(0 ∪ (a ∩ b)) = ((a ∩
b) ∪ 0) |
18 | 16, 17 | ax-r2 36 |
. . . . . . 7
((a ∩ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) =
((a ∩ b) ∪ 0) |
19 | 7, 18 | ax-r2 36 |
. . . . . 6
(a ∩ ((a⊥ ∩ b⊥ ) ∪ b)) = ((a ∩
b) ∪ 0) |
20 | 2, 19 | ax-r2 36 |
. . . . 5
(a ∩ (b ∪ (a⊥ ∩ b⊥ ))) = ((a ∩ b) ∪
0) |
21 | 20 | ax-r1 35 |
. . . 4
((a ∩ b) ∪ 0) = (a
∩ (b ∪ (a⊥ ∩ b⊥ ))) |
22 | | df-i2 45 |
. . . . . . 7
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
23 | 22 | ax-r1 35 |
. . . . . 6
(b ∪ (a⊥ ∩ b⊥ )) = (a →2 b) |
24 | | u2lemle2.1 |
. . . . . 6
(a →2 b) = 1 |
25 | 23, 24 | ax-r2 36 |
. . . . 5
(b ∪ (a⊥ ∩ b⊥ )) = 1 |
26 | 25 | lan 77 |
. . . 4
(a ∩ (b ∪ (a⊥ ∩ b⊥ ))) = (a ∩ 1) |
27 | 21, 26 | ax-r2 36 |
. . 3
((a ∩ b) ∪ 0) = (a
∩ 1) |
28 | | or0 102 |
. . 3
((a ∩ b) ∪ 0) = (a
∩ b) |
29 | | an1 106 |
. . 3
(a ∩ 1) = a |
30 | 27, 28, 29 | 3tr2 64 |
. 2
(a ∩ b) = a |
31 | 30 | df2le1 135 |
1
a ≤ b |