Proof of Theorem bi4
Step | Hyp | Ref
| Expression |
1 | | bi3 839 |
. . 3
((a ≡ b) ∩ (b
≡ c)) = (((a ∩ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
2 | | u12lembi 726 |
. . . 4
((c →1 d) ∩ (d
→2 c)) = (c ≡ d) |
3 | 2 | ax-r1 35 |
. . 3
(c ≡ d) = ((c
→1 d) ∩ (d →2 c)) |
4 | 1, 3 | 2an 79 |
. 2
(((a ≡ b) ∩ (b
≡ c)) ∩ (c ≡ d)) =
((((a ∩ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ ((c →1 d) ∩ (d
→2 c))) |
5 | | df-i1 44 |
. . . . . 6
(c →1 d) = (c⊥ ∪ (c ∩ d)) |
6 | 5 | lan 77 |
. . . . 5
((((a ∩ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (c →1 d)) = ((((a
∩ b) ∩ c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ d))) |
7 | | leao2 163 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ c⊥ ) ≤ (c⊥ ∪ (c ∩ d)) |
8 | 7 | lecom 180 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C (c⊥ ∪ (c ∩ d)) |
9 | | leao4 165 |
. . . . . . . . . 10
((a ∩ b) ∩ c) ≤
((a⊥ ∩ b⊥ )⊥ ∪
c) |
10 | | oran2 92 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ )⊥ ∪
c) = ((a⊥ ∩ b⊥ ) ∩ c⊥
)⊥ |
11 | 9, 10 | lbtr 139 |
. . . . . . . . 9
((a ∩ b) ∩ c) ≤
((a⊥ ∩ b⊥ ) ∩ c⊥
)⊥ |
12 | 11 | lecom 180 |
. . . . . . . 8
((a ∩ b) ∩ c) C
((a⊥ ∩ b⊥ ) ∩ c⊥
)⊥ |
13 | 12 | comcom 453 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ c⊥ )⊥ C
((a ∩ b) ∩ c) |
14 | 13 | comcom6 459 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C ((a ∩ b) ∩
c) |
15 | 8, 14 | fh2rc 480 |
. . . . 5
((((a ∩ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ d))) =
((((a ∩ b) ∩ c)
∩ (c⊥ ∪ (c ∩ d)))
∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ (c⊥ ∪ (c ∩ d)))) |
16 | | comanr2 465 |
. . . . . . . . 9
c C ((a ∩ b) ∩
c) |
17 | 16 | comcom3 454 |
. . . . . . . 8
c⊥ C
((a ∩ b) ∩ c) |
18 | | comanr1 464 |
. . . . . . . . 9
c C (c ∩ d) |
19 | 18 | comcom3 454 |
. . . . . . . 8
c⊥ C
(c ∩ d) |
20 | 17, 19 | fh2 470 |
. . . . . . 7
(((a ∩ b) ∩ c)
∩ (c⊥ ∪ (c ∩ d))) =
((((a ∩ b) ∩ c)
∩ c⊥ ) ∪
(((a ∩ b) ∩ c)
∩ (c ∩ d))) |
21 | | anass 76 |
. . . . . . . . 9
(((a ∩ b) ∩ c)
∩ c⊥ ) = ((a ∩ b) ∩
(c ∩ c⊥ )) |
22 | | dff 101 |
. . . . . . . . . . 11
0 = (c ∩ c⊥ ) |
23 | 22 | lan 77 |
. . . . . . . . . 10
((a ∩ b) ∩ 0) = ((a ∩ b) ∩
(c ∩ c⊥ )) |
24 | 23 | ax-r1 35 |
. . . . . . . . 9
((a ∩ b) ∩ (c
∩ c⊥ )) = ((a ∩ b) ∩
0) |
25 | | an0 108 |
. . . . . . . . 9
((a ∩ b) ∩ 0) = 0 |
26 | 21, 24, 25 | 3tr 65 |
. . . . . . . 8
(((a ∩ b) ∩ c)
∩ c⊥ ) =
0 |
27 | | anass 76 |
. . . . . . . . . 10
((((a ∩ b) ∩ c)
∩ c) ∩ d) = (((a ∩
b) ∩ c) ∩ (c
∩ d)) |
28 | 27 | ax-r1 35 |
. . . . . . . . 9
(((a ∩ b) ∩ c)
∩ (c ∩ d)) = ((((a
∩ b) ∩ c) ∩ c)
∩ d) |
29 | | anass 76 |
. . . . . . . . . . 11
(((a ∩ b) ∩ c)
∩ c) = ((a ∩ b) ∩
(c ∩ c)) |
30 | | anidm 111 |
. . . . . . . . . . . 12
(c ∩ c) = c |
31 | 30 | lan 77 |
. . . . . . . . . . 11
((a ∩ b) ∩ (c
∩ c)) = ((a ∩ b) ∩
c) |
32 | 29, 31 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ b) ∩ c)
∩ c) = ((a ∩ b) ∩
c) |
33 | 32 | ran 78 |
. . . . . . . . 9
((((a ∩ b) ∩ c)
∩ c) ∩ d) = (((a ∩
b) ∩ c) ∩ d) |
34 | 28, 33 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∩ c)
∩ (c ∩ d)) = (((a ∩
b) ∩ c) ∩ d) |
35 | 26, 34 | 2or 72 |
. . . . . . 7
((((a ∩ b) ∩ c)
∩ c⊥ ) ∪
(((a ∩ b) ∩ c)
∩ (c ∩ d))) = (0 ∪ (((a ∩ b) ∩
c) ∩ d)) |
36 | | or0r 103 |
. . . . . . 7
(0 ∪ (((a ∩ b) ∩ c)
∩ d)) = (((a ∩ b) ∩
c) ∩ d) |
37 | 20, 35, 36 | 3tr 65 |
. . . . . 6
(((a ∩ b) ∩ c)
∩ (c⊥ ∪ (c ∩ d))) =
(((a ∩ b) ∩ c)
∩ d) |
38 | | comanr2 465 |
. . . . . . . 8
c⊥ C
((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
39 | 38, 19 | fh2 470 |
. . . . . . 7
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ (c⊥ ∪ (c ∩ d))) =
((((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ c⊥ ) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ (c ∩ d))) |
40 | | anass 76 |
. . . . . . . . 9
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ c⊥ ) = ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ c⊥ )) |
41 | | anidm 111 |
. . . . . . . . . 10
(c⊥ ∩ c⊥ ) = c⊥ |
42 | 41 | lan 77 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ c⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
43 | 40, 42 | ax-r2 36 |
. . . . . . . 8
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ c⊥ ) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
44 | | an4 86 |
. . . . . . . . 9
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ (c ∩ d)) =
(((a⊥ ∩ b⊥ ) ∩ c) ∩ (c⊥ ∩ d)) |
45 | | anass 76 |
. . . . . . . . 9
(((a⊥ ∩
b⊥ ) ∩ c) ∩ (c⊥ ∩ d)) = ((a⊥ ∩ b⊥ ) ∩ (c ∩ (c⊥ ∩ d))) |
46 | 22 | ran 78 |
. . . . . . . . . . . . 13
(0 ∩ d) = ((c ∩ c⊥ ) ∩ d) |
47 | 46 | ax-r1 35 |
. . . . . . . . . . . 12
((c ∩ c⊥ ) ∩ d) = (0 ∩ d) |
48 | | anass 76 |
. . . . . . . . . . . 12
((c ∩ c⊥ ) ∩ d) = (c ∩
(c⊥ ∩ d)) |
49 | | an0r 109 |
. . . . . . . . . . . 12
(0 ∩ d) = 0 |
50 | 47, 48, 49 | 3tr2 64 |
. . . . . . . . . . 11
(c ∩ (c⊥ ∩ d)) = 0 |
51 | 50 | lan 77 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ (c ∩ (c⊥ ∩ d))) = ((a⊥ ∩ b⊥ ) ∩ 0) |
52 | | an0 108 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ 0) = 0 |
53 | 51, 52 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ (c ∩ (c⊥ ∩ d))) = 0 |
54 | 44, 45, 53 | 3tr 65 |
. . . . . . . 8
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ (c ∩ d)) =
0 |
55 | 43, 54 | 2or 72 |
. . . . . . 7
((((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ c⊥ ) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ (c ∩ d))) =
(((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∪ 0) |
56 | | or0 102 |
. . . . . . 7
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∪ 0) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
57 | 39, 55, 56 | 3tr 65 |
. . . . . 6
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ (c⊥ ∪ (c ∩ d))) =
((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
58 | 37, 57 | 2or 72 |
. . . . 5
((((a ∩ b) ∩ c)
∩ (c⊥ ∪ (c ∩ d)))
∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ (c⊥ ∪ (c ∩ d)))) =
((((a ∩ b) ∩ c)
∩ d) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
59 | 6, 15, 58 | 3tr 65 |
. . . 4
((((a ∩ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (c →1 d)) = ((((a
∩ b) ∩ c) ∩ d)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
60 | 59 | ran 78 |
. . 3
(((((a ∩ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (c →1 d)) ∩ (d
→2 c)) = (((((a ∩ b) ∩
c) ∩ d) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (d →2 c)) |
61 | | anass 76 |
. . 3
(((((a ∩ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (c →1 d)) ∩ (d
→2 c)) = ((((a ∩ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ ((c →1 d) ∩ (d
→2 c))) |
62 | | anass 76 |
. . . . . . . 8
((((a ∩ b) ∩ c)
∩ d) ∩ (d →2 c)) = (((a ∩
b) ∩ c) ∩ (d
∩ (d →2 c))) |
63 | | an4 86 |
. . . . . . . 8
(((a ∩ b) ∩ c)
∩ (d ∩ (d →2 c))) = (((a
∩ b) ∩ d) ∩ (c
∩ (d →2 c))) |
64 | | ancom 74 |
. . . . . . . . . . 11
(c ∩ (d →2 c)) = ((d
→2 c) ∩ c) |
65 | | u2lemab 611 |
. . . . . . . . . . 11
((d →2 c) ∩ c) =
c |
66 | 64, 65 | ax-r2 36 |
. . . . . . . . . 10
(c ∩ (d →2 c)) = c |
67 | 66 | lan 77 |
. . . . . . . . 9
(((a ∩ b) ∩ d)
∩ (c ∩ (d →2 c))) = (((a
∩ b) ∩ d) ∩ c) |
68 | | an32 83 |
. . . . . . . . 9
(((a ∩ b) ∩ d)
∩ c) = (((a ∩ b) ∩
c) ∩ d) |
69 | 67, 68 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∩ d)
∩ (c ∩ (d →2 c))) = (((a
∩ b) ∩ c) ∩ d) |
70 | 62, 63, 69 | 3tr 65 |
. . . . . . 7
((((a ∩ b) ∩ c)
∩ d) ∩ (d →2 c)) = (((a ∩
b) ∩ c) ∩ d) |
71 | 70 | df2le1 135 |
. . . . . 6
(((a ∩ b) ∩ c)
∩ d) ≤ (d →2 c) |
72 | 71 | lecom 180 |
. . . . 5
(((a ∩ b) ∩ c)
∩ d) C (d →2 c) |
73 | | an32 83 |
. . . . . . . . 9
(((a ∩ b) ∩ c)
∩ d) = (((a ∩ b) ∩
d) ∩ c) |
74 | | leao4 165 |
. . . . . . . . 9
(((a ∩ b) ∩ d)
∩ c) ≤ ((a⊥ ∩ b⊥ )⊥ ∪
c) |
75 | 73, 74 | bltr 138 |
. . . . . . . 8
(((a ∩ b) ∩ c)
∩ d) ≤ ((a⊥ ∩ b⊥ )⊥ ∪
c) |
76 | 75, 10 | lbtr 139 |
. . . . . . 7
(((a ∩ b) ∩ c)
∩ d) ≤ ((a⊥ ∩ b⊥ ) ∩ c⊥
)⊥ |
77 | 76 | lecom 180 |
. . . . . 6
(((a ∩ b) ∩ c)
∩ d) C ((a⊥ ∩ b⊥ ) ∩ c⊥
)⊥ |
78 | 77 | comcom7 460 |
. . . . 5
(((a ∩ b) ∩ c)
∩ d) C ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
79 | 72, 78 | fh2r 474 |
. . . 4
(((((a ∩ b) ∩ c)
∩ d) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (d →2 c)) = (((((a
∩ b) ∩ c) ∩ d)
∩ (d →2 c)) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ (d →2 c))) |
80 | | anass 76 |
. . . . . 6
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ (d →2 c)) = ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (d →2 c))) |
81 | | ancom 74 |
. . . . . . . 8
(c⊥ ∩ (d →2 c)) = ((d
→2 c) ∩ c⊥ ) |
82 | | u2lemanb 616 |
. . . . . . . 8
((d →2 c) ∩ c⊥ ) = (d⊥ ∩ c⊥ ) |
83 | 81, 82 | ax-r2 36 |
. . . . . . 7
(c⊥ ∩ (d →2 c)) = (d⊥ ∩ c⊥ ) |
84 | 83 | lan 77 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (d →2 c))) = ((a⊥ ∩ b⊥ ) ∩ (d⊥ ∩ c⊥ )) |
85 | | an12 81 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ (d⊥ ∩ c⊥ )) = (d⊥ ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
86 | | ancom 74 |
. . . . . . 7
(d⊥ ∩
((a⊥ ∩ b⊥ ) ∩ c⊥ )) = (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ ) |
87 | 85, 86 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ (d⊥ ∩ c⊥ )) = (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ ) |
88 | 80, 84, 87 | 3tr 65 |
. . . . 5
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ (d →2 c)) = (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ ) |
89 | 70, 88 | 2or 72 |
. . . 4
(((((a ∩ b) ∩ c)
∩ d) ∩ (d →2 c)) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ (d →2 c))) = ((((a
∩ b) ∩ c) ∩ d)
∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |
90 | 79, 89 | ax-r2 36 |
. . 3
(((((a ∩ b) ∩ c)
∩ d) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ (d →2 c)) = ((((a
∩ b) ∩ c) ∩ d)
∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |
91 | 60, 61, 90 | 3tr2 64 |
. 2
((((a ∩ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∩ ((c →1 d) ∩ (d
→2 c))) = ((((a ∩ b) ∩
c) ∩ d) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |
92 | 4, 91 | ax-r2 36 |
1
(((a ≡ b) ∩ (b
≡ c)) ∩ (c ≡ d)) =
((((a ∩ b) ∩ c)
∩ d) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |