Proof of Theorem u5lemle2
Step | Hyp | Ref
| Expression |
1 | | df-i5 48 |
. . . . . 6
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
2 | 1 | ax-r1 35 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (a →5 b) |
3 | | u5lemle2.1 |
. . . . 5
(a →5 b) = 1 |
4 | 2, 3 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = 1 |
5 | 4 | lan 77 |
. . 3
(a ∩ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) = (a ∩ 1) |
6 | | comanr1 464 |
. . . . . 6
a C (a ∩ b) |
7 | | comanr1 464 |
. . . . . . 7
a⊥ C
(a⊥ ∩ b) |
8 | 7 | comcom6 459 |
. . . . . 6
a C (a⊥ ∩ b) |
9 | 6, 8 | com2or 483 |
. . . . 5
a C ((a ∩ b) ∪
(a⊥ ∩ b)) |
10 | | comanr1 464 |
. . . . . 6
a⊥ C
(a⊥ ∩ b⊥ ) |
11 | 10 | comcom6 459 |
. . . . 5
a C (a⊥ ∩ b⊥ ) |
12 | 9, 11 | fh1 469 |
. . . 4
(a ∩ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) = ((a ∩ ((a
∩ b) ∪ (a⊥ ∩ b))) ∪ (a
∩ (a⊥ ∩ b⊥ ))) |
13 | 6, 8 | fh1 469 |
. . . . . . 7
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b))) = ((a ∩
(a ∩ b)) ∪ (a
∩ (a⊥ ∩ b))) |
14 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
15 | 14 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a ∩ b)) =
((a ∩ a) ∩ b) |
16 | | anidm 111 |
. . . . . . . . . . 11
(a ∩ a) = a |
17 | 16 | ran 78 |
. . . . . . . . . 10
((a ∩ a) ∩ b) =
(a ∩ b) |
18 | 15, 17 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a ∩ b)) =
(a ∩ b) |
19 | | ancom 74 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b) = (b ∩
(a ∩ a⊥ )) |
20 | | anass 76 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b) = (a ∩
(a⊥ ∩ b)) |
21 | | dff 101 |
. . . . . . . . . . . . 13
0 = (a ∩ a⊥ ) |
22 | 21 | ax-r1 35 |
. . . . . . . . . . . 12
(a ∩ a⊥ ) = 0 |
23 | 22 | lan 77 |
. . . . . . . . . . 11
(b ∩ (a ∩ a⊥ )) = (b ∩ 0) |
24 | | an0 108 |
. . . . . . . . . . 11
(b ∩ 0) = 0 |
25 | 23, 24 | ax-r2 36 |
. . . . . . . . . 10
(b ∩ (a ∩ a⊥ )) = 0 |
26 | 19, 20, 25 | 3tr2 64 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b)) = 0 |
27 | 18, 26 | 2or 72 |
. . . . . . . 8
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b))) = ((a ∩
b) ∪ 0) |
28 | | or0 102 |
. . . . . . . 8
((a ∩ b) ∪ 0) = (a
∩ b) |
29 | 27, 28 | ax-r2 36 |
. . . . . . 7
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b))) = (a ∩
b) |
30 | 13, 29 | ax-r2 36 |
. . . . . 6
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b))) = (a ∩
b) |
31 | | ancom 74 |
. . . . . . 7
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
32 | | anass 76 |
. . . . . . 7
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
33 | 21 | lan 77 |
. . . . . . . . 9
(b⊥ ∩ 0) =
(b⊥ ∩ (a ∩ a⊥ )) |
34 | 33 | ax-r1 35 |
. . . . . . . 8
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
35 | | an0 108 |
. . . . . . . 8
(b⊥ ∩ 0) =
0 |
36 | 34, 35 | ax-r2 36 |
. . . . . . 7
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
37 | 31, 32, 36 | 3tr2 64 |
. . . . . 6
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
38 | 30, 37 | 2or 72 |
. . . . 5
((a ∩ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ (a
∩ (a⊥ ∩ b⊥ ))) = ((a ∩ b) ∪
0) |
39 | 38, 28 | ax-r2 36 |
. . . 4
((a ∩ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ (a
∩ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
40 | 12, 39 | ax-r2 36 |
. . 3
(a ∩ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
41 | | an1 106 |
. . 3
(a ∩ 1) = a |
42 | 5, 40, 41 | 3tr2 64 |
. 2
(a ∩ b) = a |
43 | 42 | df2le1 135 |
1
a ≤ b |