Proof of Theorem gomaex3lem2
Step | Hyp | Ref
| Expression |
1 | | gomaex3lem2.5 |
. . . . . 6
e ≤ f⊥ |
2 | 1 | lecon3 157 |
. . . . 5
f ≤ e⊥ |
3 | 2 | lecom 180 |
. . . 4
f C e⊥ |
4 | | comid 187 |
. . . . 5
f C f |
5 | 4 | comcom2 183 |
. . . 4
f C f⊥ |
6 | 3, 5 | fh3r 475 |
. . 3
((e⊥ ∩ f⊥ ) ∪ f) = ((e⊥ ∪ f) ∩ (f⊥ ∪ f)) |
7 | | anor3 90 |
. . . . 5
(e⊥ ∩ f⊥ ) = (e ∪ f)⊥ |
8 | 7 | ax-r5 38 |
. . . 4
((e⊥ ∩ f⊥ ) ∪ f) = ((e ∪
f)⊥ ∪ f) |
9 | 8 | ax-r1 35 |
. . 3
((e ∪ f)⊥ ∪ f) = ((e⊥ ∩ f⊥ ) ∪ f) |
10 | | anabs 121 |
. . . . . 6
(e⊥ ∩ (e⊥ ∪ f)) = e⊥ |
11 | 10 | df2le1 135 |
. . . . 5
e⊥ ≤ (e⊥ ∪ f) |
12 | | leid 148 |
. . . . . 6
e⊥ ≤ e⊥ |
13 | 12, 2 | lel2or 170 |
. . . . 5
(e⊥ ∪ f) ≤ e⊥ |
14 | 11, 13 | lebi 145 |
. . . 4
e⊥ = (e⊥ ∪ f) |
15 | | df-t 41 |
. . . . 5
1 = (f ∪ f⊥ ) |
16 | | ax-a2 31 |
. . . . 5
(f ∪ f⊥ ) = (f⊥ ∪ f) |
17 | 15, 16 | ax-r2 36 |
. . . 4
1 = (f⊥ ∪
f) |
18 | 14, 17 | 2an 79 |
. . 3
(e⊥ ∩ 1) =
((e⊥ ∪ f) ∩ (f⊥ ∪ f)) |
19 | 6, 9, 18 | 3tr1 63 |
. 2
((e ∪ f)⊥ ∪ f) = (e⊥ ∩ 1) |
20 | | an1 106 |
. 2
(e⊥ ∩ 1) =
e⊥ |
21 | 19, 20 | ax-r2 36 |
1
((e ∪ f)⊥ ∪ f) = e⊥ |