Proof of Theorem u4lemle2
| Step | Hyp | Ref
| Expression |
| 1 | | df-i4 47 |
. . . . . 6
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
| 2 | 1 | ax-r1 35 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (a →4 b) |
| 3 | | u4lemle2.1 |
. . . . 5
(a →4 b) = 1 |
| 4 | 2, 3 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = 1 |
| 5 | 4 | lan 77 |
. . 3
(a ∩ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = (a ∩ 1) |
| 6 | | comanr1 464 |
. . . . . . 7
a C (a ∩ b) |
| 7 | | comanr1 464 |
. . . . . . . 8
a⊥ C
(a⊥ ∩ b) |
| 8 | 7 | comcom6 459 |
. . . . . . 7
a C (a⊥ ∩ b) |
| 9 | 6, 8 | com2or 483 |
. . . . . 6
a C ((a ∩ b) ∪
(a⊥ ∩ b)) |
| 10 | 9 | comcom 453 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) C a |
| 11 | | comor1 461 |
. . . . . . . . . 10
(a⊥ ∪ b) C a⊥ |
| 12 | 11 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∪ b) C a |
| 13 | | comor2 462 |
. . . . . . . . 9
(a⊥ ∪ b) C b |
| 14 | 12, 13 | com2an 484 |
. . . . . . . 8
(a⊥ ∪ b) C (a
∩ b) |
| 15 | 11, 13 | com2an 484 |
. . . . . . . 8
(a⊥ ∪ b) C (a⊥ ∩ b) |
| 16 | 14, 15 | com2or 483 |
. . . . . . 7
(a⊥ ∪ b) C ((a
∩ b) ∪ (a⊥ ∩ b)) |
| 17 | 16 | comcom 453 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) C (a⊥ ∪ b) |
| 18 | | comanr2 465 |
. . . . . . . . 9
b C (a ∩ b) |
| 19 | 18 | comcom3 454 |
. . . . . . . 8
b⊥ C
(a ∩ b) |
| 20 | | comanr2 465 |
. . . . . . . . 9
b C (a⊥ ∩ b) |
| 21 | 20 | comcom3 454 |
. . . . . . . 8
b⊥ C
(a⊥ ∩ b) |
| 22 | 19, 21 | com2or 483 |
. . . . . . 7
b⊥ C
((a ∩ b) ∪ (a⊥ ∩ b)) |
| 23 | 22 | comcom 453 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) C b⊥ |
| 24 | 17, 23 | com2an 484 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) C ((a⊥ ∪ b) ∩ b⊥ ) |
| 25 | 10, 24 | fh2 470 |
. . . 4
(a ∩ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = ((a ∩ ((a
∩ b) ∪ (a⊥ ∩ b))) ∪ (a
∩ ((a⊥ ∪ b) ∩ b⊥ ))) |
| 26 | 6, 8 | fh1 469 |
. . . . . . 7
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b))) = ((a ∩
(a ∩ b)) ∪ (a
∩ (a⊥ ∩ b))) |
| 27 | | anidm 111 |
. . . . . . . . . . . . 13
(a ∩ a) = a |
| 28 | 27 | ran 78 |
. . . . . . . . . . . 12
((a ∩ a) ∩ b) =
(a ∩ b) |
| 29 | 28 | ax-r1 35 |
. . . . . . . . . . 11
(a ∩ b) = ((a ∩
a) ∩ b) |
| 30 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
| 31 | 29, 30 | ax-r2 36 |
. . . . . . . . . 10
(a ∩ b) = (a ∩
(a ∩ b)) |
| 32 | | dff 101 |
. . . . . . . . . . . . 13
0 = (a ∩ a⊥ ) |
| 33 | 32 | lan 77 |
. . . . . . . . . . . 12
(b ∩ 0) = (b ∩ (a ∩
a⊥ )) |
| 34 | | an0 108 |
. . . . . . . . . . . 12
(b ∩ 0) = 0 |
| 35 | | ancom 74 |
. . . . . . . . . . . 12
(b ∩ (a ∩ a⊥ )) = ((a ∩ a⊥ ) ∩ b) |
| 36 | 33, 34, 35 | 3tr2 64 |
. . . . . . . . . . 11
0 = ((a ∩ a⊥ ) ∩ b) |
| 37 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b) = (a ∩
(a⊥ ∩ b)) |
| 38 | 36, 37 | ax-r2 36 |
. . . . . . . . . 10
0 = (a ∩ (a⊥ ∩ b)) |
| 39 | 31, 38 | 2or 72 |
. . . . . . . . 9
((a ∩ b) ∪ 0) = ((a ∩ (a ∩
b)) ∪ (a ∩ (a⊥ ∩ b))) |
| 40 | 39 | ax-r1 35 |
. . . . . . . 8
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b))) = ((a ∩
b) ∪ 0) |
| 41 | | or0 102 |
. . . . . . . 8
((a ∩ b) ∪ 0) = (a
∩ b) |
| 42 | 40, 41 | ax-r2 36 |
. . . . . . 7
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b))) = (a ∩
b) |
| 43 | 26, 42 | ax-r2 36 |
. . . . . 6
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b))) = (a ∩
b) |
| 44 | | anor1 88 |
. . . . . . . 8
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 45 | 44 | lan 77 |
. . . . . . 7
((a⊥ ∪ b) ∩ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) |
| 46 | | an12 81 |
. . . . . . 7
(a ∩ ((a⊥ ∪ b) ∩ b⊥ )) = ((a⊥ ∪ b) ∩ (a
∩ b⊥
)) |
| 47 | | dff 101 |
. . . . . . 7
0 = ((a⊥ ∪
b) ∩ (a⊥ ∪ b)⊥ ) |
| 48 | 45, 46, 47 | 3tr1 63 |
. . . . . 6
(a ∩ ((a⊥ ∪ b) ∩ b⊥ )) = 0 |
| 49 | 43, 48 | 2or 72 |
. . . . 5
((a ∩ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ (a
∩ ((a⊥ ∪ b) ∩ b⊥ ))) = ((a ∩ b) ∪
0) |
| 50 | 49, 41 | ax-r2 36 |
. . . 4
((a ∩ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ (a
∩ ((a⊥ ∪ b) ∩ b⊥ ))) = (a ∩ b) |
| 51 | 25, 50 | ax-r2 36 |
. . 3
(a ∩ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = (a ∩ b) |
| 52 | | an1 106 |
. . 3
(a ∩ 1) = a |
| 53 | 5, 51, 52 | 3tr2 64 |
. 2
(a ∩ b) = a |
| 54 | 53 | df2le1 135 |
1
a ≤ b |