Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i3or | GIF version |
Description: Kalmbach implication OR builder. (Contributed by NM, 26-Dec-1997.) |
Ref | Expression |
---|---|
i3or | ((a ≡ b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le1 146 | . 2 ((a ≡ b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) ≤ 1 | |
2 | ka4ot 435 | . . . 4 ((a ≡ b)⊥ ∪ ((a ∪ c) ≡ (b ∪ c))) = 1 | |
3 | 2 | ax-r1 35 | . . 3 1 = ((a ≡ b)⊥ ∪ ((a ∪ c) ≡ (b ∪ c))) |
4 | i3bi 496 | . . . . . 6 (((a ∪ c) →3 (b ∪ c)) ∩ ((b ∪ c) →3 (a ∪ c))) = ((a ∪ c) ≡ (b ∪ c)) | |
5 | 4 | ax-r1 35 | . . . . 5 ((a ∪ c) ≡ (b ∪ c)) = (((a ∪ c) →3 (b ∪ c)) ∩ ((b ∪ c) →3 (a ∪ c))) |
6 | lea 160 | . . . . 5 (((a ∪ c) →3 (b ∪ c)) ∩ ((b ∪ c) →3 (a ∪ c))) ≤ ((a ∪ c) →3 (b ∪ c)) | |
7 | 5, 6 | bltr 138 | . . . 4 ((a ∪ c) ≡ (b ∪ c)) ≤ ((a ∪ c) →3 (b ∪ c)) |
8 | 7 | lelor 166 | . . 3 ((a ≡ b)⊥ ∪ ((a ∪ c) ≡ (b ∪ c))) ≤ ((a ≡ b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) |
9 | 3, 8 | bltr 138 | . 2 1 ≤ ((a ≡ b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) |
10 | 1, 9 | lebi 145 | 1 ((a ≡ b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-i3 46 df-le 129 df-le1 130 df-le2 131 df-c1 132 df-c2 133 df-cmtr 134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |