Proof of Theorem df2i3
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. 2
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | | ax-a3 32 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = ((a⊥ ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) |
3 | | or12 80 |
. . . 4
((a⊥ ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
4 | | coman1 185 |
. . . . . . . . . 10
(a⊥ ∩ b) C a⊥ |
5 | 4 | comcom 453 |
. . . . . . . . 9
a⊥ C
(a⊥ ∩ b) |
6 | 5 | comcom2 183 |
. . . . . . . 8
a⊥ C
(a⊥ ∩ b)⊥ |
7 | 6 | comcom5 458 |
. . . . . . 7
a C (a⊥ ∩ b) |
8 | | comorr 184 |
. . . . . . . . 9
a⊥ C
(a⊥ ∪ b) |
9 | 8 | comcom2 183 |
. . . . . . . 8
a⊥ C
(a⊥ ∪ b)⊥ |
10 | 9 | comcom5 458 |
. . . . . . 7
a C (a⊥ ∪ b) |
11 | 7, 10 | fh4 472 |
. . . . . 6
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ a)
∩ ((a⊥ ∩ b) ∪ (a⊥ ∪ b))) |
12 | | lea 160 |
. . . . . . . . . 10
(a⊥ ∩ b) ≤ a⊥ |
13 | | leo 158 |
. . . . . . . . . 10
a⊥ ≤ (a⊥ ∪ b) |
14 | 12, 13 | letr 137 |
. . . . . . . . 9
(a⊥ ∩ b) ≤ (a⊥ ∪ b) |
15 | 14 | df-le2 131 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
16 | 15 | lan 77 |
. . . . . . 7
(((a⊥ ∩
b) ∪ a) ∩ ((a⊥ ∩ b) ∪ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ a)
∩ (a⊥ ∪ b)) |
17 | | ancom 74 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ a) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ ((a⊥ ∩ b) ∪ a)) |
18 | | ax-a2 31 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ a) =
(a ∪ (a⊥ ∩ b)) |
19 | 18 | lan 77 |
. . . . . . . 8
((a⊥ ∪ b) ∩ ((a⊥ ∩ b) ∪ a)) =
((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))) |
20 | 17, 19 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b) ∪ a) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))) |
21 | 16, 20 | ax-r2 36 |
. . . . . 6
(((a⊥ ∩
b) ∪ a) ∩ ((a⊥ ∩ b) ∪ (a⊥ ∪ b))) = ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))) |
22 | 11, 21 | ax-r2 36 |
. . . . 5
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) = ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))) |
23 | 22 | lor 70 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) |
24 | 3, 23 | ax-r2 36 |
. . 3
((a⊥ ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) |
25 | 2, 24 | ax-r2 36 |
. 2
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) |
26 | 1, 25 | ax-r2 36 |
1
(a →3 b) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) |